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Preface

This volume synthesizes the work carried out by several French teams and their
international collaborators during SIROCO (SeIsmology for ROtation and COnvec-
tion), a project funded by the French Agence Nationale de la Recherche (ANR),
from 2007 to 2010. This work was driven by the need for theoretical insight into the
huge quantity of high-quality observational data recently provided by space experi-
ments such as CoRoT and Kepler.

Ultra-high precision photometry is now available for thousands of stars, from
main-sequence to red-giant stars and spanning the Hertzsprung–Russell diagram
with an unprecedented completeness. As the SoHo mission unveiled the solar inte-
rior, the CoRoT and Kepler missions constitute a new dawn for asteroseismology,
allowing a detailed probing of stellar interiors. This enables our understanding and
modeling of stellar structure and evolution to be tested as never before. In particular,
stellar masses, radii, and ages can be derived with an unprecedented accuracy.

It has long been known that the main uncertainties in stellar structure and evolu-
tion are those related to hydrodynamical processes, in particular to those of stellar
rotation and the transport of energy by turbulent convection. In the context of CoRoT
and Kepler this project came at a propitious time, since the convergent efforts in
developing theories and numerical models for rotating stars and their oscillations
provide a crucial step in the progress of our knowledge of stellar interiors.

For instance, rotation is known to have significant impact on the structure of stars
and their evolution. Many issues regarding the modeling of such an impact needs
to be investigated. Centrifugal distortion of fast rotating stars requires fully two-
dimensional studies to properly infer the effect of rotation on oscillations, and this
was one of the SIROCO objectives. This is particularly important for massive stars
such as O and B stars, many of which are fast rotators, in particular the very rapidly
rotating Be stars, and for intermediate-mass rapidly rotating stars such as the delta
Scuti stars. Both exhibit complex and puzzling features in their oscillation frequency
spectra that call for a solid theoretical background to aid their interpretation.

The second SIROCO topic was related to turbulent convection, a cornerstone of
any realistic stellar model, but which up to now had been lacking tight observa-
tional constraints. Mode frequencies can be used for this purpose, but mode ampli-
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vi Preface

tudes provide more powerful seismic diagnostics since they depend on the dynam-
ical properties of turbulent convection. It is only the recent space observations that
have provided data with sufficient precision for such theories to bear fruits.

The focus of the SIROCO project on these two fundamental problems, with the
aim of providing a solid theoretical background, has enabled the development of
adapted seismic diagnostics. This is a crucial step toward a complete and fruitful
exploitation of the wealth of data provided by the CoRoT and Kepler spacecrafts.

The first part of the book concentrates on rotation and associated seismology.
The first four chapters present the modeling of rotating stars; in particular, they
examine the impact of rotation on massive-star evolution, the different transport
processes in stellar interiors, the 2D modeling of rotating stars, and the influence of
initial conditions on the rotation history. Then, four chapters present models for the
oscillation of rotating stars. The first two consider the properties of the oscillation
modes through 2D numerical calculations and asymptotic theory, and the next two
discuss low-frequency oscillations and prospects for asteroseismology in rapidly
rotating stars.

The second part of the book deals with convection and associated seismology.
First, the connections between stellar oscillations and turbulent convection are ex-
amined; next, a chapter investigates semi-convection; finally, experimental and nu-
merical investigations of internal gravity waves excited by turbulent penetrative con-
vection are presented.

The audience targeted by this book consists of researchers, PhD students, and
postdocs. This book is based on tutorials and discussions held at the SIROCO work-
shop in Paris (France) in May 2011, which has allowed us to give a progress report
on the very latest asteroseismological developments in stellar rotation and convec-
tion. It is our hope that this book will stimulate further research in this fascinating
field.

The editors sincerely thank the authors for the high quality of their contributions.

M.J. Goupil
K. Belkacem

C. Neiner
F. Lignières

J.J. Green

Paris, France
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Chapter 1
Models of Rotating Massive Stars: Impacts
of Various Prescriptions

Georges Meynet, Sylvia Ekstrom, André Maeder, Patrick Eggenberger,
Hideyuki Saio, Vincent Chomienne, and Lionel Haemmerlé

Abstract The rotation of stars has many interesting and important consequences
for the photometric and chemical evolution of galaxies. Many of the predictions
of models of stellar rotation are now compared with observations of surface abun-
dances and velocities, with interferometric studies of fast rotating stars, with internal
rotation profiles as they can be deduced by asteroseismology, to cite just a few obser-
vational constraints. In this paper, we investigate how the outputs of models depend
on the prescriptions used for the diffusion coefficients included in the shellular ro-
tating models. After recalling the various prescriptions found in the literature, we
discuss their impacts on the evolutionary tracks and lifetimes of the Main-Sequence
(MS) phase, the changes of the surface composition and velocities during the MS
phase, the distribution of the core helium lifetime in the blue and red parts of the HR
diagram, the extensions of the blue loops, the evolution of the angular momentum of
the core, and the synthesis of primary nitrogen in fast-rotating metal-poor massive
stars. While some of these outputs depend only slightly on the prescriptions used
(for instance, the evolution of the surface velocities), most of them show a signifi-
cant dependence. The models which best fit the changes of the surface abundances
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are those computed with the vertical shear diffusion coefficient of Maeder (Astron.
Astrophys. 321:134–144, 1997) and the horizontal shear diffusion coefficient by
Zahn (Astron. Astrophys. 265:115–132, 1992).

1.1 Rotation in Stellar Models

In recent years, many effects of axial rotation on the structure and the evolution
of massive stars have been studied (see, e.g., the recent review [17]). Among the
most important effects, there are those linked to the transport of angular momentum
and of chemical species in the interior of stars. These may strongly affect many
outputs of stellar models such as the variation with the age of the surface abundances
and velocities, the evolutionary tracks and lifetimes, the nature of the supernova
events and of the stellar remnants, and the nature and the amount of new synthesized
species. As a consequence, when results of rotating models are used in population
synthesis models or in models for the chemical evolution of galaxies, quite different
results are obtained with respect to results obtained from nonrotating models.

Most, if not all, of the recent grids of rotating models have been computed in the
framework of the theory proposed by [31], with further improvements by [18]. This
was named the theory of shellular rotation, since it is based on the assumption that
on an isobaric surface, the angular velocity,Ω , is nearly constant, which means that
any variations can be considered as a small perturbation. This nearly constant value
of Ω on an isobaric surface is due to the fact that along those directions, there are
neither stable temperature nor density gradients which counteract shear turbulence.
This implies the existence of strong “horizontal” (i.e., along an isobaric surface)
diffusion coefficient called Dh hereafter. In the following, when we speak about
rotating models, we implicitly assume that we consider models with shellular rota-
tion. The present models do not include the effects of the dynamo theory suggested
by [29].1

In the framework of the shellular theory of rotation, the equation describing the
transport of chemical species is a pure diffusive equation [2],

ρ
∂Xi

∂t

∣
∣
∣
∣
Mr

= 1

r2

∂

∂r

(

ρr2Dchem
∂Xi

∂r

)

, (1.1)

where Xi is the abundance in mass fraction of particles i, and Dchem is the appro-
priate diffusion coefficient for chemical elements (see below).

In a differentially rotating star, the evolution of the angular velocity Ω has to be
followed at each level r (for shellular rotation), so that a full description of Ω(r, t)
is available. The values of Ω(r, t) influence the mixing of elements, and in turn the
evolution of Ω(r, t) also depends on the mixing processes and on the distribution

1Numerical simulations by [32] have studied MHD instabilities arising in the radiation zone of a
differentially rotating star, in which a poloidal field of fossil origin is sheared into a toroidal field.
Their simulations show no sign of dynamo action.
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of the elements. The derivation of the equation for the transport of angular mo-
mentum is not straightforward. In the case of shellular rotation, the equation in the
Lagrangian form becomes [15, 31]

ρ
∂

∂t

(

r2Ω̄
)

Mr
= 1

5r2

∂

∂r

(

ρr4Ω̄U2(r)
)+ 1

r2

∂

∂r

(

ρDangr
4 ∂Ω̄

∂r

)

. (1.2)

Here, Ω̄ is the average value of Ω on an isobar. U2 is the radial component of the
meridional circulation velocity, and Dang is the appropriate diffusion coefficient for
angular momentum. The second term on the right is a diffusion term, similar in its
form to (1.1), while the first term on the right is an advective term, i.e., modeling
the transport by a velocity current. We notice that Eq. (1.1) does not contain such
an advective term. It could contain a term of that kind; however, it can be shown
[2] that the combined effect of turbulence and circulation currents is equivalent to a
diffusion for the element transport (see Eq. (1.1)).

In the equation for the transport of chemical species in radiative zones, the dif-
fusion coefficient, Dchem, is made up of two terms. These are the vertical shear
diffusion coefficient Dshear and the effective diffusion coefficient, Deff, which ac-
count for the resultant effect of the strong horizontal shear diffusion, Dh (i.e., the
shear on an isobaric surface) and of the meridional currents.

In the equation for the transport of angular momentum, the diffusion coefficient,
Dang, is made up of only one term, the shear diffusion coefficient Dshear.

For the coefficients Dshear, we can find two different expressions in the litera-
ture:

Dshear from [13, M97],

Dshear = fenerg
HP

gδ

K

[ϕ
δ
∇μ + (∇ad −∇rad)]

(
9π

32
Ω

d lnΩ

d ln r

)2

, (1.3)

where K = 4ac
3κ

T 4∇ad
ρPδ

, and with fenerg = 1, and ϕ = ( d lnρ
d lnμ)P,T = 1;

Dshear from [30, TZ97],

Dshear = fenerg
HP

gδ

(K +Dh)

[ϕ
δ
∇μ(1+ K

Dh
)+ (∇ad −∇rad)]

(
9π

32
Ω

d lnΩ

d ln r

)2

(1.4)

with K , fenerg, and ϕ as in (1.1).

For the coefficients Dh, we can find three different expressions in the literature:

Dh from [31, Z92],

Dh = 1

ch
r
∣
∣2V (r)− αU(r)∣∣, (1.5)

where α = 1
2

d ln(r2Ω̄)
d ln r and ch = 1;
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Dh from [14, M03],

Dh =Ar
(

rΩ̄(r)V |2V − αU |)1/3 (1.6)

with α as in Eq. (5) and A= 0.002;
Dh from [20, MZ04],

Dh =
(
β

10

)1/2
(

r2Ω̄
)1/2(

r|2V − αU |)1/2 (1.7)

with α as in Eq. (5) and β = 1.5× 10−6.

All prescriptions use the same effective mixing coefficient for the chemical
species:

Deff = 1

30

|r U(r)|2
Dh

. (1.8)

There are therefore six different combinations of the two shear diffusion coeffi-
cients and of the three horizontal diffusion coefficients. The physics sustaining the
different expressions for these various diffusion coefficients is described in details
in the papers indicated above, and we shall not recall them in the present work.
We just summarize below a few facts which are useful to keep in mind in order to
understand their different impacts in stellar models.

• Since the angular momentum is transported mainly by the meridional currents,
one can expect that changing the expressions for the diffusion coefficients will
have only a weak impact on the angular momentum distribution in stars. We shall
see that this is well verified by the numerical models.
• The diffusion coefficient Deff is the key quantity determining the efficiency of

mixing in regions where there is a strong μ-gradient, for instance, at the border
of the H-convective core.
• The larger Dh, the smaller Deff, and thus less mixing will occur in regions of

strong μ-gradients. The expressions of M03 and MZ04 for Dh are larger than the
expression given by Z92.
• The diffusion coefficient Dshear is the key quantity determining the efficiency of

mixing in regions with weak or no μ-gradients, typically in the radiative envelope
of massive stars above the H-convective core.
• The two expressions ofDshear are strictly equivalent in zones with no μ-gradients.
• The ratio Dshear(M97)/Dshear(TZ97) ∼ K/Dh in regions where ϕ

δ
∇μ is signifi-

cantly larger than the difference ∇ad − ∇rad. Since Dh is inferior to K , one has
that Dshear(M97) > Dshear(TZ97).

1.2 The Models Computed

In the present work, we study the implications of these different choices on the
following model outputs:
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• Evolutionary tracks and lifetimes during the Main-Sequence (MS) phase.
• Changes of the surface composition during the MS phase.
• Changes of the surface velocities during the MS phase.
• The distribution of the core helium lifetime in the blue and red parts of the HR

diagram.
• The extensions of the blue loops.
• The evolution of the angular momentum of the core.
• The synthesis of primary nitrogen in fast rotating metal poor massive stars.

For that purpose, we have computed models for different initial masses, metallic-
ities, and rotations, with each one of the six possible combinations of values for
(Dshear,Dh) (see Table 1.1). For each mass and metallicity, the models are labeled
by one digit and one letter: 1 is for models computed with the shear diffusion co-
efficient of [13], and 2 for models computed with the shear diffusion coefficient of
[30]; the letters A, B, and C are respectively for the horizontal diffusion coefficient
from [14, 20, 31].

In Table 1.1, the first column gives the prescription used. The time-averaged
equatorial velocity during the MS phase is given in column 2, the MS lifetime is
given in column 3, and the difference between the surface helium abundance in mass
fraction at the end of the MS phase and on the ZAMS is given in column 4. Column 5
presents the N/H ratio obtained at the surface, at the end of the MS phase, and
normalized to the initial N/H value. The core He-burning lifetime and the analogs
of columns 4 and 5 but at the end of the core He-burning phase are indicated in
columns 6, 7, and 8, respectively. The duration of the core He-burning phase spent in
the red (logTeff < 3.68), blue (logTeff > 3.87), and yellow (3.68< logTeff < 3.87)
parts of the HR diagram are given in columns 9, 10, and 11, respectively. The ratio
of the time spent in the blue to that spent in the red is shown in column 12, and
the masses of the helium cores, of the carbon-oxygen cores, and of the remnants
are given in columns 13, 14, and 15. The mass of nitrogen produced divided by the
mass of CNO elements initially present is given in column 16.

1.3 Evolutionary Tracks and Lifetimes During
the Main-Sequence Phase

Figure 1.1 presents the tracks in the Hertzsprung–Russell diagram (left panel) and
the variation of the mass fraction of hydrogen as a function of the Lagrangian mass
coordinate (right panel) for the 15M� at Z = 0.002 and with Ωini/Ωcrit = 0.5. One
can classify the models in three categories:

1. The models which present very little differences with respect to the nonrotating
model. These are the models 2B (not shown in Fig. 1.1) and 2C.

2. The models which become overluminous with respect to the nonrotating model
but present no significant extension toward lower effective temperatures. These
are the models 1A, 1B (not shown), and 1C.
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Fig. 1.1 Evolutionary tracks in the Hertzsprung–Russell diagram (left panel) and the variation of
the mass fraction of hydrogen as a function of the Lagrangian mass coordinate (right panel) for
the 15M� at Z = 0.002 and with Ωini/Ωcrit = 0.5. The dotted line corresponds to the nonrotating
model, and the other models are labeled as indicated in Table 1.1. The models used in the right
panel have all a logTeff equal to 4.48. The central hydrogen mass fraction is equal to 0.1973
(nonrotating model), 0.1982 (1A), 0.2068 (1C), 0.2427 (2A), 0.2244 (2C). The models 1B and 2B
are not shown since they present many similarities with the models 1C and 2C

3. Only one model, the model 2A, becomes overluminous and reaches lower effec-
tive temperatures at the end of the MS phase.

This behavior reflects differences in the efficiency of mixing in different regions
of the stars. The models which are of the less efficiently mixed stars (2B and 2C, due
to large Dh and thus small Deff) show indeed very little difference in their nonrotat-
ing tracks (compare lines for the model 2C and the nonrotating model in Fig. 1.1).
The model 2A presents a situation where there is an efficient mixing at the border of
the convective core but where the shear is not so efficient in the radiative envelope.
Thus, the surface abundances are not yet modified at the stage represented in Fig. 1.1
(right panel). The larger core increases the luminosity and also is responsible for the
extension toward lower temperature of the MS band in the HR diagram (an effect
similar to an extension of the core produced by an overshoot). Finally, the model
which presents the greatest efficiency of mixing both at the border of the core and in
the radiative zone is the model 1A. This mixing keeps this model in bluer positions
in the HR diagram compared to model 2.

One notes that in model 1A, the μ-gradient (with respect to mass) is steeper than
in the model 2A, while both models have the same expression for Deff (since they
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have the same expression for Dh). This is because in model 1A, which has Dshear
larger than in 2A, hydrogen flows more efficiently inwards and helium outwards.
This replenishes hydrogen at the border of the core. The net effect of these diffusions
of hydrogen and helium is to make the star more luminous and bluer. The same
occurs in the 1C model, although the effect is less marked because of the smaller
value for Deff.

In Table 1.1, the MS lifetimes are indicated in column 3. The first row for each
model gives the value of the MS lifetime in million years for the model 1A. The rows
for the other models show the differences in percentage with respect to the value
obtained for the model 1A. We see that the impact on the MS lifetimes remains
modest (at most 13.5 % for the 15M� models considered here) with respect to
the precision with which an age estimated can be made through the fitting of an
isochrone in this mass domain. On the other hand, the scatter is not negligible with
respect to the amplitude of the effect of the increase of the MS lifetime due to
rotation. Indeed, the increase of the MS lifetime with respect to the nonrotating case
amounts to 18.5 % for the 15M� model.

All the models computed here account for the same overshoot, but Fig. 1.1 shows
that the track will present quite different extensions due to the various prescriptions.
One sees also that the models 1A and 2A (those computed with the smaller Dh
and thus greater Deff) are the only ones presenting an extension of the core with
respect to the nonrotating model. Therefore, only the use of these two prescriptions
can attribute part of the extension of the convective core to an effect of rotational
mixing. Let us note that the recent determination of the extension of the mixed
core in fast rotating stars by [27] seem to support the view that rotation enlarges
the convective core. This would support prescriptions 1A or 2A. In that case, one
should use slowly rotating stars in order to constrain the extension of the core due
to the process of convective penetration alone as is done, for instance, in [7].

1.4 Changes of the Surface Composition During the MS Phase

The changes of the surface composition during the MS phases can be seen in Ta-
ble 1.1 and in Fig. 1.2 for the 15M� at Z = 0.002 and Ωini/Ωcrit = 0.5 cases.
Columns 3 and 4 of Table 1.1 give, at the end of the MS phase, the excesses of he-
lium at the surface of the star (in mass fraction and with respect to the initial value)
and the ratio of nitrogen to hydrogen normalized to the initial value, respectively.

Independent of the prescriptions used, one notes, as was already obtained in pre-
vious works (see [16]), that the surface enrichment in nitrogen increases in increas-
ing initial stellar masses and that it also increases for decreasing metallicity, in both
cases keeping the initial rotation the same and comparing stars at similar evolution-
ary stages.

One sees also that the surface enrichments are higher whenDshear is higher (com-
pare models of series 1 with models of series 2). This is quite logical since Dshear
is the parameter which governs the transport of chemical elements in the region
extending from the vicinity of the core up to the surface.
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Fig. 1.2 Upper panel:
Evolution of the N/H ratio at
the surface of stellar models
computed with various
diffusive coefficients as a
function of the equatorial
velocity. Lower panel:
Evolution of the effective
temperature during the core
He-burning phases for
different prescriptions of the
diffusive coefficients

The greatest surface enrichments are always obtained for the model 1A, the
smallest for the model 2A (except for the very metal poor 40M� model, but the
difference between models 2A and 2B is quite small). For a given model, the varia-
tion of the prescriptions used produces a scatter of the N/H value obtained at the end
of the MS phase of around a factor of 2. For the excesses in helium, the factors are
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greater, however, except for the 40M� at Z = 0.00001 case, the enhancements are
very modest and well below those which could be estimated from observed spectra.

1.5 Changes of the Surface Velocity During the MS Phase

Column 2 in Table 1.1 compares the time-averaged equatorial velocity during the
MS phase. The first row of the table indicates the equatorial surface velocity for
model 1A in km s−1. The other lines indicate the difference in percentage with re-
spect to model 1A. One sees that the differences are always less than 5.3 %, which
is small. This is due to the fact that changing the prescriptions for the diffusion co-
efficients has only a very weak impact on the velocity of the meridional currents.
Thus, the transport of the angular moment which is mainly driven by these currents
is almost unaffected by changes of the diffusion coefficients.

This can also be seen in Fig. 1.2 (lower panel), which shows the variation of the
nitrogen enhancement with respect to the surface equatorial velocity (tracks on this
diagram go from right to left as time proceeds). One sees that during the MS phase,
all of the models span the same interval in equatorial velocities. What changes is the
surface nitrogen enrichment obtained at the end of the MS phase. In the plane N/H
versus υeq, model 1A will produce a steeper relation than model 2A.

If one considers mean values of the ratio N/H for B dwarfs in the Galaxy and in
the SMC, one obtains enhancement factors between 1.6 and 2.5 for the Galaxy and
3.2 and 6.3 for the SMC (see Table 2 in [17] and references therein). These mean
values should be obtained for stars with an average rotation during the MS phase of
around 200 km s−1.

At solar metallicity, the 15M� model 1A well reproduces the observed enrich-
ments [7]. This is not a surprise, since the value of the parameter fenerg in Dshear,
chosen equal to one, has been selected in order to fit these observed enrichments.
With the same value of fenerg, the 15M� at Z = 0.002 with an average rotation of
200 km s−1 and prescriptions 1A predicts an enhancement factor between 3 and 5.3
in the last third of its MS lifetime, which is in the range of the observed values. In
that case, no calibration has been made, and the good fit supports this kind of model.
The other prescriptions gives too low surface enrichments keeping fenerg equal to 1.

We note that a value equal to 1 for fenerg implies that we really account for the
physics involved into the expression for Dshear, which would not be the case if one
would have to multiply the expression by a constant much greater or much smaller
than one!

1.6 The Distribution of the Core Helium Lifetime in the Blue
and Red Parts of the HR Diagram

The observed number of blue to red supergiants in clusters at different metallici-
ties is an important feature that stellar models should be able to reproduce. This is
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important for many reasons, for instance, to predict the correct photometric evolu-
tion of young starburst regions or the nature of the progenitors of the core collapse
supernovae. It happens that observation shows that the blue-to-red ratio in clusters
with masses at the turn off between 9M� and 30M� increases when the metallicity
increases, while standard stellar models predict that the blue-to-red supergiant ratio
decreases when the metallicity increases [6, 12, 21, 25]. The blue-to-red supergiant
ratio has also been discussed in the context of field stellar populations in [5, 9].

At the moment, there is no explanation for this general trend. On the other hand,
many works could reproduce the blue-to-red supergiant ratios observed at one given
metallicity by changing the mass loss rates (see, e.g., [28]) or mixing [12, 16]. In this
paper we shall not discuss all the aspects of this question but focus on the importance
of mixing.

Looking at the right panel of Fig. 1.2, which shows the evolution of the effec-
tive temperature during the core Helium burning phase, we see that only one set of
diffusion coefficients (the one using the Dshear of Talon and Zahn 1997 and the Dh
of Zahn 1992) makes the 15M� at Z = 0.002 evolve rapidly to the red part of the
HR diagram after the MS phase. This is the prescription that we used in [16], where
we suggested that rotational mixing could help a lot in reproducing the observed
blue-to-red supergiant ratio in the Small Magellanic Cloud. In view of the present
results, we see that, while this conclusion might always be correct, it is however
quite dependent on the prescriptions used for the diffusion coefficients.

It is interesting to identify from the numerical experiments performed in this
work the conditions which favor a rapid redward evolution at low metallicity. It
does appear that two conditions have to be satisfied: (1) The mixing at the border of
the convective cores (both during the H- and He-burning phases) have to be suffi-
ciently efficient. Indeed, we see that any very strong values for Dh that prevent any
strong mixing in regions with strong molecular weight gradient (μ-gradient) also
prevent the star evolving to the red phase. (2) The mixing in the zones where the
μ-gradients are weak, namely the outer part of the radiative envelope, should not
be too strong, because any strong mixing there would make the star be more “ho-
mogeneous” and thus maintain a bluer position in the HR diagram. As very often
noticed in the literature, we see that this red-to-blue evolution is a feature which is
very sensitive to many physical ingredients of the models. The fact that it depends
on subtle changes of the efficiency of mixing in different regions of the star is just
one illustration of this.

Taken at face value, the set of diffusion coefficients Dshear from [30], and the
Dh of [31] appear as the most favored to explain the blue-to-red supergiant ratio at
low metallicity. However, other parameters—for instance, the changes of the sur-
face abundances expected for an averaged rotational velocity—are better fitted with
the prescription 1A (keeping fenerg = 1). Moreover, since mass loss, both during the
MS phase and at the red supergiant phase, plays a key role in shaping the blue-to-
red supergiant ratio (see, e.g., the discussion in [25]), it may be premature to use the
observed variation of the blue-to-red supergiant ratio to constrain the prescription to
be used. Probably in order to make progress in this area of research, two important
points have first to be settled: (1) to distinguish, using observations of the surface
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abundances and/or of the vibrational properties, those blue supergiants which are
direct successors of MS stars from those which are on a blue loop after a red super-
giant stage; the ability to distinguish, at different metallicities, between those blue
supergiants coming from the MS phase from those coming from the red supergiant
phase would improve considerably our understanding of the blue supergiant forma-
tion process; (2) to obtain more reliable mass loss rates especially during the red
and blue supergiant phases.

1.7 The Extensions of the Blue Loops

Another feature which is sensitive to the form of the diffusion coefficients is the
extension of the blue loops for stars with masses between about 3M� to 12M�.
This is important in order to predict the populations of Cepheids, and also for the
blue-to-red supergiant ratio discussed above, since the presence of a blue loop (when
compared with the same model without blue loop) will reduce the lifetime of red
supergiant but increase that of the blue supergiant.

Looking at Fig. 1.3, we can see the following features: at Z = 0.002, the duration
of the blue loops increases more and more passing from models 2A to 2B, and then
to 2C. When the Dshear is changed (model 1), the “loop” (if we can still speak of a
loop in this case) even begins in the blue part of the HR diagram.

At Z = 0.014, the situation is quite different. First, the loops in all models are
significantly reduced, which is a well-known effect when the metallicity increases.
Second, models 2B and 2C do not show any loops. If such prescriptions were to
be adopted, then only slow rotators could show blue loops and thus explain the
existence of Cepheids.

We can note also that in the first set of models (labels beginning with one, i.e.,
Dshear from Maeder 1997), the impact of changingDh on blue loops is quite modest
in both metallicities. In the second set of models, changing Dh has a strong effect.

At low metallicity, models 2A for 9M� would be the more helpful to reconcile
the theoretical predictions with the observations as was suggested from previous
section which focused on 15M� stellar models. At solar metallicity, whatever model
is considered, the blue-to-red supergiant ratios do appear too low (at most 1 while
it is observed at around 3). At this metallicity, the problem may be at least partially
cured by enhancing the mass loss rate during the red supergiant phase.

1.8 The Angular Momentum of the Core

During the evolution of a star, the core loses some angular momentum, mainly due
to the effect of meridional currents. It happens that, in shellular rotating models
without interior magnetic field, these losses are not sufficient to explain the rela-
tively long observed rotation periods of young pulsars [10]. This is the reason why
some authors have considered much stronger coupling between the core and the
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Fig. 1.3 Upper panel:
Evolution of the effective
temperature during the core
He-burning phases for
different prescriptions of the
diffusive coefficients in a
rotating 9M� stellar model at
Z = 0.002. Lower panel:
Same as upper panel at
Z = 0.014

envelope by introducing a magnetic field which forces solid body rotation or near
solid body rotation during the MS phase [11]. Here, we have not accounted for such
a strong coupling. A question however that we may ask is the extent to which this
loss of angular momentum depends on the prescription used. Are there any of these
prescriptions which would significantly change the angular momentum contained in
the core at the end of its evolution?
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A priori, one would expect that the loss of angular momentum by the core due
to the transport processes should be only slightly dependent on the various pre-
scriptions because, as already stressed, during most of the stellar lifetime, angu-
lar momentum is transported by the meridional currents whose velocities are only
weakly dependent on the choice of Dh. Let us, however, check this point in the nu-
merical models that we have. Since we have not pursued the computation beyond
the end of the core He-burning phase, we compare here the angular momentum of
the core obtained at the end of the core helium burning phase. The masses of the
remnant of the different 15M� Z = 0.002 models are between 1.6M� and 1.8M�.
The angular momentum which would be locked into the 1.6M� remnant suppos-
ing that no change does occur in the advanced phases of the evolution, would be
between 0.93 and 1.14× 1050 g cm−2 s−1 depending on the prescription used. The
analog values in the case that the remnant is 1.8M� would be between 1.19 and
1.44 × 1050 g cm−2 s−1. So we see that these quantities present a scatter around
their mean values of at most 20 %.

Is such a scatter important? As it concerns the missing angular momentum loss
of the core, the answer is clearly no. To illustrate this, let us derive the following
numerical estimate: if we lock an angular momentum content of 1×1050 g cm−2 s−1

in a neutron star, it would show a rotation period of about 0.1 ms, smaller by a factor
between 4 and 7 than the critical periods for neutron stars, which are between 0.44
and 0.65 ms as given by [8]. The period is also smaller by two to three orders of
magnitude than the observed periods of young pulsars which are between 20 and
100 ms [19, 26]. We can at least conclude that the missing transport mechanism
cannot be due to a particular choice of the diffusion coefficients for Dshear and Dh,
since whatever choice is made, the angular momentum content of the core is more
or less the same at the end of the core He-burning phase.

The angular momentum losses of the core may be underestimated either during
the H and He-burning phases of the star and/or in the advanced phases and/or at the
time of the supernova explosion and/or during the early years of the evolution of
the new born neutron star. It may be that magnetic braking may play a role in this
context [24].

1.9 The Synthesis of Primary Nitrogen in Fast-Rotating
Metal-Poor Massive Stars

Fast-rotating massive stars may be the sources of primary nitrogen in the early
phases of the evolution of galaxies [3, 4]. Therefore, it is important to assess the
extent to which the primary nitrogen production depends on the prescriptions used.
In the last column of Table 1.1, we have indicated the mass of nitrogen (in solar
masses) present in the region outside the stellar remnant normalized by the mass
of CNO elements that were initially present in the same region of the star. We call
this quantity M(14N)/M(CNO). When nitrogen is produced by the transformation
of the carbon and oxygen initially present in the star (secondary nitrogen production
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channel), then the quantity shown in Table 1.1 can at most be equal to one. It would
be one if all the carbon and oxygen initially present in that region were to have been
transformed into nitrogen. Actually it is less than one because, in the regions inside
the H-burning shell, the nitrogen which has been produced by the CNO burning will
then have been further transformed into 22Ne.

We see that M(14N)/M(CNO) is inferior to one except in the fast-rotating very
metal-poor 40M� stellar models. This illustrates the results already discussed by
[22, 23] that rotational mixing, by bringing carbon and oxygen (freshly synthe-
sized in the helium-burning core) into the H-burning shell, enhances significantly
the quantities of nitrogen produced. The quantities produced are no longer limited
by the initial metallicity of the star, since the carbon and oxygen transformed into
nitrogen are synthesized by the star itself through helium transformation (primary
nitrogen production channel).

We see, however, that the enhancements of primary nitrogen production present
great variations depending on the prescriptions used for Dshear and Dh. Before we
analyze these results in more detail, let us recall a few general facts:

1. Primary nitrogen production depends on the efficiency of transport mechanisms
in the region between the He-burning core and the H-burning shell;

2. The diffusion coefficient which dominates the transport in that region is Dshear.
A careful reader may be puzzled by such a statement since we mentioned above
that Dshear operates mainly in weak μ-gradient regions while the appropriate
diffusion coefficient in strong μ-gradient regions would be Deff. Does it mean
that the μ-gradients are not so strong at the border of the He-burning core? The
answer is yes. Indeed, in the core-shell intermediate region, most of the time,
the gradients of μ are not very strong since the connected regions are all helium
rich; moreover, the gradient of Ω which enters into the expression for Dshear is
important.

3. Since Dshear is the dominant diffusion coefficient, the gradient of Ω becomes
the key factor for primary nitrogen production, a small gradient producing less
efficient shear mixing than a steep gradient.

In Fig. 1.4, we can see the variations of Ω as a function of the radius in the
40M� stellar models when the mass fraction of helium in the core is equal to 0.45
(that means models at the middle of the core He-burning phase). We see that models
using the prescription by [13] have a smooth gradient immediately above the con-
vective core and show in outer zones a succession of regions with very steep and
flat gradients. We shall call this zone the cliff. The cliff corresponds to the transition
between the envelope and the core. The H-burning shell is more or less at its base
(see Fig. 1.4).

The smooth gradient results, at least in part, from the activity of the shear trans-
port having occurred during the core He-burning phase. The flat Ω regions in the
cliff are produced by intermediate convective zones that are no longer present at the
stage shown in the figure but have appeared in previous stages of the evolution of the
star. In the present models, we assume that convective regions rotate as solid bodies,
hence the flattening of Ω in these zones. The flat regions present a very low Dshear
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Fig. 1.4 Variation of the
angular velocity as a function
of the radius inside the 40M�
stellar models when the mass
fraction of helium at the
center is equal to 0.45. The
dotted lines show, in each
model, the variation as a
function of the radius of the
rate of production of energy
by H-burning, εH, in units of
105 erg g−1 s−1. The
long-dashed line shows the
mass fraction of hydrogen

coefficient since the Ω-gradients are very small. The part of the Ω profile which is
important for primary nitrogen production is the portion with a smooth gradient just
above the He-burning core.

In the model 1B (higher Dh and thus smaller Deff), we note that the smooth
gradient zone is more compact, making the gradient ofΩ in that region steeper. This
results from the less efficient chemical mixing at the border of the H-burning core.
As a result, the helium core will be smaller, and the transition zone between the core
and the shell will be in a deeper part of the star. Since model 1B presents a steeper
gradient of Ω in the smooth gradient zone, it produces more primary nitrogen than
model 1A (see Table 1.1).

The configurations presented in the bottom panels, resulting from prescriptions
2A and 2B, show different characteristics with respect to models 1A and 1B in
upper panels: (1) just above the core the gradient of Ω is steeper; (2) the region
with a succession of strong Ω-gradients and flat portions no longer exists. These
two features result from less efficient shear transport at the border of the burning
cores. Again, as in model 1, we see that when high values of Dh are used, stronger
gradients are obtained.

We can see from Table 1.1 that, actually, the primary nitrogen production is larger
in the models 1B, 2A, and 2B than in model 1A as can be expected from the line
of reasoning above. An interesting conclusion of this discussion is that primary
nitrogen production depends mainly of the gradient of Ω just above the helium
burning core.
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1.10 Conclusions

We have studied the impact of various prescriptions on important outputs of rotating
massive star models. The main conclusions are the following:

• The outputs of stellar models which show marginal dependence on the prescrip-
tions used for Dshear and Dh are the MS lifetimes, the evolution of the surface
velocities, and the evolution of the angular momentum of the core.
• The outputs of stellar models that show significant dependence on the prescrip-

tions used for Dshear and Dh are the shape of the evolutionary tracks, the surface
enrichments predicted for a given initial rotation, the blue-to-red evolution, and
the extensions of blue loops and the amount of primary nitrogen produced.
• The general trends of the increase of the mixing efficiency with the increase of the

initial mass of the star, of its initial rotation, and with the decrease of the initial
metallicity remain the same whatever the prescriptions used for Dshear and Dh.

The hope would be, of course, to identify the most realistic diffusion coefficients
on the basis of physical considerations. From an analytic point of view, the diffi-
culty is mainly in how to treat turbulence. This is reflected by the fact that in each of
these expressions, a free parameter is present (fenerg in Dshear for instance). At the
moment, this free parameter is chosen so as to allow models to reproduce one well-
identified observed feature (for instance, the surface enrichments observed at the
surface of MS B-type stars at solar metallicity). Thus, a good fit with the observed
feature which has been used to calibrate the models is not a test of the models.
The tests of the models are comparisons with other observed features such as com-
parisons with surface enrichments for other velocities, metallicities, or initial mass
ranges. We show above that prescription 1A can account for the observed enrich-
ments in the SMC, while the prescription has been calibrated on solar metallicity
stars. Thus, this can be viewed as a support of this kind of model.

We see also that one set of prescriptions cannot give satisfactory fit to all the
observed features discussed here. This is expected since these observed features are
not all governed only by the way mixing is treated. As indicated in the paper, the
blue-to-red supergiant ratio, for instance, also depends a lot on the way in which
the mass loss due to stellar winds is implemented in the models. Moreover, other
effects, not accounted for here, such as close binary evolution or magnetic braking,
may also contribute to some of the observed features.

The key to progress on the theoretical front would seem to be the ability to treat
turbulence in a more rigorous way. Probably multidimensional hydrodynamical sim-
ulations can provide important hints on this topic [1].

Another complementary approach is to use well-observed stars to constrain the
models. Stellar models that can account for many observed features have a great
chance to provide a realistic description of the structure of stars. It may be some-
times for wrong reasons, in the sense that the physical process invoked may not
be exactly the one operating in nature, but the effect of the physical process actu-
ally occurring in nature, whatever it is, has some chance to produce the structure as
obtained in the model which best fits the observations.
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We are confident that improvements in the two directions of hydrodynamical
simulations and comparisons of evolutionary models with observed stars will allow
us to constrain the possibilities for the physics occurring in stellar interiors.
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Chapter 2
Transport Processes in Stellar Interiors

Stéphane Mathis

Abstract Stars are rotating and magnetic bodies. Moreover, more and more con-
straints are obtained on such dynamical processes using, for example, seismology
and spectropolarimetry. Therefore, it is now necessary to get a complete and coher-
ent picture of dynamical processes in stellar interiors. However, to simulate such
processes in a star in full details would require treating length scales and time scales
spanning many orders of magnitude. This is clearly not feasible, even with the most
powerful computers available today. This is the reason why it is nowadays nec-
essary to use and couple 1-D, 2-D, and 3-D modelings to get a global picture of
macroscopic MHD transport processes in stellar interiors. In this review, we report
the state of the art of the modeling of transport processes in stellar interiors (both
in radiation and in convection zones) aimed to study the stars angular momentum
history, the related profile of differential rotation, and their magnetism.

2.1 Introduction

Stars are rotating and magnetic bodies. Moreover, more and more constraints are
obtained on such dynamical processes, for example, using helioseismology (see,
for example, [47]), asteroseismology [10, 34, 43, 82], and spectropolarimetry [38].
Therefore, it is now necessary to get a complete and coherent picture of dynamical
processes in stellar interiors. However, to simulate such processes in a star in full
details would require treating length scales and time scales spanning many orders
of magnitude. This is clearly not feasible, even with the most powerful computers
available today. Therefore, either one chooses to describe what occurs on a dynami-
cal time scale (such as a convective turnover time), or one focuses on the long-time
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Fig. 2.1 Rotational angular velocity ω plotted as a function of time for stars with masses
0.9 < M/M� < 1.1. Crosses show the open cluster rotation period data such that each cluster
collapses into a vertical stripe on the diagram, and short horizontal lines show the 25th and 90th
percentiles of ω, used to characterize the slow and fast rotators, respectively. The lines show ro-
tational evolution models for 1.0M� stars, fitted to the percentiles for each cluster using a simple
unweighted least squares method. For this plot, we have assumed that the stars rotate as solid bod-
ies (i.e., constant ω as a function of radius inside the star). Plotted are the ONC, NGC 2264, NGC
2362, IC 2391, IC 2602, α Per, M35, M34, the Hyades, and the Sun. (Taken from [50], courtesy
Cambridge University Press)

evolution where the typical time is either the Kelvin–Helmholtz time or that char-
acterizing the dominant nuclear reactions. The same is true for the length scales.
First, in the vertical direction, we have to choose the resolution that adequately rep-
resents the steepest gradients that develop during the evolution. Furthermore, in the
horizontal direction, the resolution that allows one to describe convective structures,
possible instabilities and turbulence has to be chosen. This is the reason why it is
nowadays necessary to use and couple 1-D, 2-D, and 3-D modelings to get a global
picture of macroscopic MHD transport processes in stellar interiors.

In this review, we report the state of the art of the modeling of transport pro-
cesses in stellar interiors (both in radiation and in convection zones) aimed to study
the star’s angular momentum history (see [13, 50], Fig. 2.1), the related profile of
differential rotation ([47], Fig. 2.2), and their magnetism. First, we recall the com-
mon methods used both on dynamical and secular time scales, namely the spectral
expansion of MHD equations. Next, we focus on the behavior of convective regions
and describe couplings between differential rotation, meridional circulation, turbu-
lence, and magnetic field and the related dynamo processes. Then, we give a global
picture of transport and mixing processes operating in stellar radiation zones. Fi-
nally, we conclude on the necessity of obtaining integrated models of stars from



2 Transport Processes in Stellar Interiors 25

Fig. 2.2 Internal angular
velocity in the Sun revealed
by helioseismology (R� is
the solar radius). It is conical
in the convective envelope
(0.02M�, M� being the solar
mass), uniform in the
radiative core (0.98M�), the
transition layer, the tachocline
being very thin (less than
0.04R�). (Taken from [47],
courtesy Science)

their cores to their surfaces and to take into account in such models the action of the
stellar environment.

2.2 Modeling

2.2.1 Preliminary Definitions

Here, we describe the method which is used to treat MHD equations in stellar inte-
riors both in convective and in radiative regions.

First, the macroscopic velocity field is expanded

V(r, t)= r sin θΩ(r, θ, t)êϕ + ṙ êr +UM(r, θ, t)+ u(r, θ,ϕ, t), (2.1)

where r = {r, θ,ϕ} are the classical spherical coordinates with their associated or-
thonormal basis {êj }j={r,θ,ϕ}, with t being the time. The first term, where Ω is the
internal angular velocity, is the azimuthal velocity field associated with the differ-
ential rotation. The second is the radial Lagrangian velocity due to the contractions
and the dilatations of the star during its evolution. The third term is the large-scale
meridional circulation velocity field (UM). Finally, u is the fluctuating velocity as-
sociated with turbulence or waves.

Next, the anelastic approximation is adopted to treat macroscopic large-scale
transport processes. The continuity equation, ∂tρ +∇ · (ρV)= 0, ρ being the den-
sity, thus becomes ∇ · (ρV)= 0, and acoustic waves are filtered.

Then, using the divergence-free property of the magnetic field, we expand it

B(r, t)=∇ ∧∇ ∧ [

ξP (r, t)êr
]+∇ ∧ [

ξT (r, t)êr
]

, (2.2)

where ξP and ξT are the poloidal and the toroidal magnetic stream functions.
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For an axisymmetric magnetic field, the poloidal field BP (r, θ, t) is in the merid-
ional plane (êr , êθ ), while the toroidal one BT (r, θ, t) is purely azimuthal along êϕ .

The different fields being now defined, we have to consider the transport equa-
tions that have to be solved in stellar interiors.

2.2.2 Transport Equation System

The first transport equation we consider is the one related to the transport of mag-
netic field, namely the induction equation

∂tB=∇ ∧ (V∧B)−∇ ∧ (η∇ ∧B), (2.3)

η being the magnetic diffusivity. Two equations, for ξP and ξT respectively, are
then obtained when the expansion given in Eq. (2.2) is introduced. First, they de-
scribe the advection of both poloidal and toroidal components of the field by the
large-scale meridional currents, both in radiation and convection zones. Then, we
get the creation of toroidal magnetic field by shearing the poloidal through differ-
ential rotation (the so-called Ω effect). Next, they give the Ohmic diffusion of each
component. Finally, they describe the action of the turbulent magnetic field fluctua-
tions, which will be possible in the case where the dynamo threshold is reached, to
generate and sustain magnetic energy; this is the so-called α-effect in the mean-field
formalism. Furthermore, in the case where secular time-scales are studied we take
into account the Lagrangian variation of magnetic field due to the contractions and
dilatations of the star during its evolution. This is the reason why we have introduced
the time-Lagrangian derivative d/dt = ∂t + ṙ∂r .

The second transport equation which has to be treated is the momentum equation,
i.e., the Navier–Stokes equation

ρ
[

∂tV+ (V ·∇)V
]=−∇P − ρg+∇ · T+

[
1

μ0
(∇ ∧B)

]

∧B. (2.4)

Here P and g are respectively the pressure and the gravity, T is the viscous stress
tensor, and the last term is the Lorentz force, where μ0 is the magnetic permeability
of vacuum. Taking its azimuthal component and averaging over ϕ, the 2-D equa-
tion (in r and θ ) for the transport of angular momentum is obtained (see [27, 69]).
In the case of both radiation and convection zones, it describes the advection of
angular momentum by meridional flows and the actions of the viscous diffusion,
of Reynolds stresses, of large-scale magnetic torque, and of Maxwell stresses. Fur-
thermore, taking the curl of this equation and focusing on the azimuthal component
gives the so-called thermal wind equation, which describes the baroclinicity of flows
inside the star and which links the differential rotation to entropy fluctuations along
isobars. In the convective regions the study of this equation allows one to study the
behavior of the differential rotation, while in the radiation zones it allows one to
close the transport loop.
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The last transport equation that has to be solved is the heat transport equation for
the macroscopic entropy (S):

ρT
[

∂tS + (V ·∇)S
]=∇ · (χ∇T )+ ρε+Q. (2.5)

It describes the transport of entropy by advection, the thermal diffusion (χ is the
thermal conductivity), the production of energy associated to nuclear reactions (ε is
the nuclear energy production rate per unit mass), and the heating due to turbulence
and Ohmic effects.

One should note that assuming hydrostatic and thermal equilibrium hypotheses
in Eqs. (2.4) and (2.5) returns us to the standard stellar evolution equations.

Finally, the equation for the transport of chemicals

ρ
[

∂t ci + (V ·∇)ci
]=∇ · [ρ(Dmic +D)⊗∇ci

]+ ρċi (2.6)

has to be solved to study elements mixing. Here ci is the concentration of the con-
sidered ith element, ċi its creation (destruction) rate,Dmic the microscopic diffusiv-
ity, and D the diffusivity tensor, which can be anisotropic, for example, in radiative
regions that are highly stable stratified zones. Since turbulent movements in the
convection zone are vigorous, chemicals are assumed to be instantaneously mixed
there. In the radiation zone, the situation is different, and the secular action of trans-
port processes in this region induces extra-mixing, which is necessary to explain
observed surface chemical element abundances.

2.2.3 The Spectral Method

Once the system of MHD dynamical equations has been established, we solve it
applying spectral methods in the horizontal direction. Then, because of the spherical
geometry of the star, we describe both scalar quantities and vectorial fields using
spherical harmonics.

Indeed, scalar quantities (X) are expanded as

X(r, t)=X(r)+X′(r, θ,ϕ, t)=X(r)+
N
∑

l=0

l
∑

m=−l

{

Xlm(r, t)Y
m
l (θ,ϕ)

}

, (2.7)

X being the hydrostatic value, andX′ the fluctuation induced by transport processes.
Likewise, we expand the poloidal and toroidal magnetic stream functions:

ξP (r, t)=
Nmag
∑

l=1

l
∑

m=−l

{

ξPl,m(r, t)Y
m
l (θ,ϕ)

}

,

ξT (r, t)=
Nmag
∑

l=1

l
∑

m=−l

{

ξTl,m(r, t)Y
m
l (θ,ϕ)

}

.

(2.8)
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Fig. 2.3 Modeling strategy to study dynamical stellar evolution. The diagram presents time scales
of the typical physical processes as functions of the angular resolution needed to properly de-
scribe these processes. The angular resolution is expressed in terms of the l index of the spherical
harmonics Yml (θ,ϕ). lnum ≈ 600 indicates the maximum angular resolution (in terms of spheri-
cal harmonics modes) presently achieved in global numerical simulations. (Adapted from [33],
courtesy Astronomy & Astrophysics)

The expansion degreeN (andNmag) on spherical harmonics depends on the prob-
lem which is treated (cf. Fig. 2.3). On the one hand, in a convection zone or if we
study highly nonaxisymmetric and nonlinear processes in a radiative region such as
shear-induced instabilities or fossil field MHD ones, we will use an expansion in-
volving high-degree spherical harmonics. On the other hand, if transport processes
in a radiation zone are studied on secular time scales, we will use only low-degree
spherical harmonics but with an high radial accuracy to capture the strongest gra-
dients which develop during the star evolution. This approach has allowed us to
study, across the various scales of time and space, the problems of dynamical stellar
evolution which cannot yet be modeled with direct numerical simulations.

Then, since transport equations such as the induction equation for the magnetic
field and the momentum equation are three-dimensional vector equations, we ex-
pand vector fields (magnetic field and macroscopic velocity) in vectorial spherical
harmonics as in stellar oscillations theory

u(r, θ,ϕ, t)

=
N
∑

l=0

l
∑

m=−l

{

ulm(r, t)R
m
l (θ,ϕ)+ vlm(r, t)Sml (θ,ϕ)+wlm(r, t)Tml (θ,ϕ)

}

,

(2.9)

where we have defined Rml (θ,ϕ) = Yml (θ,ϕ)êr , Sml (θ,ϕ) = ∇HY
m
l (θ,ϕ), and

Tml (θ,ϕ) = ∇H ∧ [Yml (θ,ϕ)êr ], while ∇H = êθ ∂θ + êϕ 1
sin θ ∂ϕ . These expansions

(Eqs. (2.7) and (2.9)) allow us to separate variables in transport equations. Thus,
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modal equations in r and t are solved in MHD spectral codes and in dynamical
stellar evolution ones.

2.3 Dynamical Processes in Stellar Convection Zones

2.3.1 Convection, Differential Rotation, and Meridional Flows

First, in the case of the Sun, the most recent studies of global rotating convection in
the external envelope have been achieved by the ASH group [25, 78, 80]. For the first
time, the solar convection is now examined using global models with a strong den-
sity contrast of 150 from top to bottom. This leads to significant results on the tur-
bulent convection spectra from large-scale (giant cell-like) down to supergranular-
like convection patterns and their correlation with temperature fluctuations. Then,
large-scale flows such as differential rotation and meridional circulation are associ-
ated with the turbulent convection action. Indeed, [24] discussed the respective role
of Reynolds stresses, baroclinic effects, and latitudinal heat transport in establishing
the conical differential rotation profile observed by Helioseismology (see, for exam-
ple, Fig. 2.2). In fact, the so-called Taylor–Proudman constraint for rotating fluids
implies that the differential rotation should be invariant along the rotation axis, thus
leading to a cylindrical rotation profile. Since this is not observed, it is necessary
to understand the source of the breaking of these constraint. First, [79] have shown
that baroclinic effects are, in part, associated with temperature latitudinal variations
because of the poleward heat transport. Moreover, using helioseismic inversions of
the temperature, of the entropy fluctuations, and angular velocity profiles, [29] show
that the Sun is not in strict thermal-wind balance and that departure from baroclinic
forcing by Reynolds stresses are likely. Thus, assessing the meridional circulation
pattern in the convective envelope is very important. In fact, if this flow contributes
little to the heat transport and to the kinetic energy budget, it plays a pivotal role
in the angular momentum transport by opposing and balancing the equatorial trans-
port by Reynolds stresses [25]. In most simulations, meridional flows are found to
be multicellular and fluctuate significantly over a solar rotation. Moreover, if tem-
poral average are performed, it is possible to find solution exhibiting a large-single
shell per hemisphere. Finally, the first complete 3-D hydrodynamical models of the
Sun from the top of the convective envelope to the radiative core have been com-
puted [30] showing the consistent establishment of the tachocline and the profile
of the large-scale flows, i.e., the differential rotation that matches with helioseismic
inversions and the meridional circulation.

Next, such studies have been extended to other stars. Indeed, the convection prop-
erties and the associated differential rotation have been examined in young solar-
type stars as a function of their rotation rate [6, 18], in T-Tauri [12], in G & K
stars [73], in F stars [3], in red giant stars [23], and in the convective cores of more
massive stars [4, 21]. These works have allowed us to study scaling laws for the dif-
ferential rotation, its properties (pro- or retrograde at the equator) and the associated
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thermal imbalance, the meridional flow properties, etc., in the whole Hertzsprung–
Russell diagram. Finally, the properties of convective penetration, which is impor-
tant for chemicals mixing, have been examined both at the base of a convective
envelope in the case of the Sun [30] and at the top of a convective core [21].

2.3.2 Dynamo Action

Using such powerful 3-D global numerical simulations, it is now possible to study
in detail the nonlinear interactions between turbulence, rotation, and the magnetic
field in the Sun. Then, if an initial weak magnetic field is introduced in global so-
lar turbulent convection simulations, the magnetic energy grows by many orders of
magnitude through dynamo action if a critical value of the magnetic Reynolds num-
ber (Rm = VfLf /η, where Vf and Lf are characteristic velocity and length of the
flow) is reached [27]. After a linear phase of exponential growth, magnetic energy
saturates, because of the nonlinear feed-back of the Lorentz force, to a fraction of
its kinetic energy retaining that level over many Ohmic decay times. Then, when
saturation is reached, the kinetic energy is reduced when compared to the initial
hydrodynamical value because of the reduction of the energy contained in the dif-
ferential rotation. Moreover, the kinetic energy contained in the convective motions
is less modified, and the nonaxisymmetric contribution to the kinetic energy is in-
creased. The radial magnetic field is concentrated in the cold downflows. There, the
Lorentz force modifies the flow, influencing the evolution of the strong downflows
through magnetic tension that reduces the vorticity creation and inhibits the shear.
The magnetic field and radial velocity are highly intermittent both in space and in
time. The poloidal field is found to reverse in simulations, but it is not yet possible to
get the observed 11-year solar cycle. To solve this problem, [22] have introduced in
such simulations a shallow stably stratified tachocline at the bottom of the computed
domain (Fig. 2.4). They show in this work that this stable layer plays a crucial role
in organizing the irregular field produced in the convective zone into axisymmetric
toroidal structures. The presence of such a large-scale mean field in the tachocline
seems to influence the behavior of the model with much less frequent magnetic re-
versals. This is the reason why it is now clear that the presence of the tachocline is
one of the key factors in generating large-scale magnetic structures and associated
magnetic cycles. From now on, butterfly diagrams are only reproduced using 2-D
mean field kinematic dynamo models with prescribed differential rotation, merid-
ional circulation, magnetic diffusivity, and α-effect (see, for example, [51]).

This work has now been extended to solar-like stars. In the series of papers
[19, 20] magnetic wreaths (coherent toroidal magnetic structures) have been identi-
fied and shown to survive within turbulent convective zones. This is a major result as
it was thought until then that this was not possible because of magnetic flux expul-
sion. These results are also in accord with current spectropolarimetric observations
of fast-rotating suns, which exhibit a dominant toroidal field topology. Activity cy-
cles have also been obtained with regular reversals of field polarity found to exist in
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Fig. 2.4 Top-left (A):
Angular velocity profile,
top-right (B): azimuthal mean
toroidal magnetic field, and
bottom (C): convective radial
velocities obtained using
integrated ASH 3-D
numerical simulations of the
solar convective envelope and
the tachocline. (Adapted from
[22], courtesy The
Astrophysical Journal)

turbulent conditions. In the same time, as in the Solar case, 2-D mean field dynamo
models have been developed in order to study the impact of various physical pro-
cesses on stellar magnetic cycles guided by 3-D numerical simulations. It has been
shown that multicelled meridional flows and turbulent pumping have a significant
impact on the cycle period and the butterfly diagram that are used to interpret the
observed scaling law linking the star’s cycle period to its rotation rate [37, 52].

Finally, the dynamo action due to turbulent convection has been undertaken in
convective cores of more massive stars [4, 28]. In [44], the interaction of a con-
vective core dynamo with various fossil fields in its surrounding radiative envelope
(see Sect. 2.4.3) has been studied. It has demonstrated that such interaction (if the
external field possesses a poloidal component) can lead to a strong dynamo branch
in the core with magnetic field strength reaching the mega-Gauss level.

2.4 Dynamical Processes in Stellar Radiation Zones

In the classical approach, stellar radiation zones are supposed to be motionless.
However, they are the seat of dynamical processes that act on secular time scales
to transport angular momentum and chemicals. Four main processes are then iden-
tified (see, for example, [106, 121]): the meridional circulation, turbulence, fossil
magnetic fields, and internal waves. These mechanisms form what is called the ro-
tational transport (cf. Fig. 2.5). We will now describe each of them and the state of
the art of their modeling.
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Fig. 2.5 The highly nonlinear rotational transport in the solar radiative core. Meridional circula-
tion, shear-induced turbulence, fossil magnetic field, and internal waves act together to transport
angular momentum and chemicals. In the solar case, the two latter processes are necessary to ex-
plain the observed angular velocity profile

2.4.1 Meridional Circulation

In a first step, the large-scale meridional circulation, which occurs in stellar radiation
zones, was ascribed to the deformation of the isothermal surfaces by the centrifugal
acceleration (and by the Lorentz force if there is a magnetic field and the tidal force
if there is a close companion). Then, the radiative flux is no longer divergence-free
[113] and must be balanced by heat advection. Therefore, in the original treatment
[42, 105, 112] the meridional circulation velocity (and the induced mixing) was
linked to the ratio of the centrifugal acceleration (and other perturbing forces) to the
gravity. The characteristic time was derived by Sweet and named the Eddington–

Sweet time tES = tKH
GM

Ω2R3 , tKH = GM2

RL
being the Kelvin–Helmholtz time (R, M ,

and L are respectively the stellar radius, mass, and luminosity). These results in-
dicated that rapid rotators should be well mixed due to this circulation that should
modify their evolution to the giant branch. This was then corrected by [75] who
invoked the effects of μ-gradients (i.e., the chemical composition) to cancel such
circulation effects.

However, the fact that meridional circulation advects angular momentum was ig-
nored. Then, after a transient phase which lasts about an Eddington–Sweet time, the
star settles into an asymptotic regime where the circulation is mainly driven by the
torques applied to the star and internal stresses as those related to the shear-induced
turbulence (if we do not take into account fossil magnetic fields and internal waves);
their cases will be discussed respectively in Sects. 2.4.3 and 2.4.4. On one hand, if
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Fig. 2.6 Highly nonlinear interactions between the differential rotation (upper-right panel), the
meridional circulation (bottom-left panel, where we represent the iso-contours of the stream merid-
ional function (ξ ); the meridional circulation is tangent to these lines), and the related thermal
imbalance (δT ) (bottom-right panel) during the evolution on the main sequence of a 1.5M� star
with a solar metallicity and an initial equatorial velocity Vini = 100 km s−1. The rotation pro-
file is represented for three positions in the Hertzsprung–Russell diagram (upper-left corner):
Xc = {0.675,0.32,0.0}, where Xc is the central fraction in mass in hydrogen. The meridional cur-
rents, which are driven here by the torque of the wind that slows down the surface, and the related
temperature fluctuation are represented for Xc = 0.32. (Adapted from [33], courtesy Astronomy &
Astrophysics)

the star losses angular momentum through a wind, the circulation adjusts to trans-
port angular momentum to the surface [33, 62, 68, 120]. The induced rotation, re-
sulting from the angular momentum advection, is then nonuniform and a baroclinic
state sets in where the temperature varies with latitude along the isobar. On the other
hand, if the star does not exchange angular momentum, the advection by the circula-
tion balances the turbulent transport induced by the shear of the differential rotation;
in the case of a uniform rotation without any turbulent transport the circulation thus
dies [31]. In the case of solar-type stars (cf. Fig. 2.6) it is thus the loss or the gain of
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angular momentum which drives the circulation and not the amplitude of the angular
velocity. Note also that the circulation can be driven by star’s structural adjustments
during their evolution. Therefore, the loop of the transport in stellar radiation zones
in the case where we treat the highly nonlinear interactions between the differen-
tial rotation, the related shear-induced turbulence, and the meridional circulation is
identified (see [33, 88]): first, meridional currents are sustained by the torques ap-
plied at the stellar surface, by internal stresses such as the viscous ones related to
turbulence and by structural adjustments; next, the temperature relaxes to balance
the advection of entropy by the meridional circulation; finally, because of the baro-
clinic torque induced by the latitudinal distribution of temperature fluctuations on
the isobar, a new differential rotation profile is established because of the so-called
thermal-wind balance that may again generate turbulence, and the loop is closed.

2.4.2 Shear-Induced Turbulence

Stellar radiation zones are stably stratified. In such regions, hydrodynamical tur-
bulence is thus strongly influenced by the buoyancy force, which inhibits vertical
displacements. The vertical and horizontal shear instabilities thus give birth to a
supposed strongly anisotropic turbulent transport much efficient in the horizontal
direction, as in oceans [99, 120]. Vertical turbulent diffusion of angular velocity
and chemicals is thus weaker than the horizontal and horizontal gradients of all
quantities are thus strongly damped allowing reduced expansion in few spherical
harmonics in Eq. (2.7). A review of prescriptions used for describing shear-induced
turbulent transport in stellar radiation zones is given in [70]. Other instabilities such
as baroclinic and double diffusive instabilities can also develop (see, for example,
[118] and [49]).

Secular modeling has shown that combined action of such turbulent transport and
meridional circulation advection are successful, for example, in explaining proper-
ties of massive stars [77]. However, since such mechanisms are unable to explain the
observed solar radiation zone angular velocity profile (see, for example, [84, 111])
and the rotation of the core of subgiants and red giant stars [10, 34], fossil magnetic
fields that are detected, for example, at the surface of the radiative envelope of some
of the massive stars [114] and internal waves that are excited by convective regions
must be studied.

2.4.3 The Fossil Magnetic Field Dynamics

The core of solar-type stars and the envelopes of massive ones are supposed to be
the seat of a fossil magnetic field, which has been trapped during the star’s birth
and is a remnant of the stellar formation and of the PMS dynamo. The possible
configurations of this field are now understood as resulting from an MHD turbulent
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Fig. 2.7 Left: Unstable purely toroidal fossil magnetic field, once the Tayler instability has reached
its saturation (the colorscale is a function of the density). Right: Mixed stable fossil field configu-
ration resulting from an initial MHD turbulent relaxation. (Taken from [41], courtesy The Astro-
physical Journal)

relaxation process, in which the magnetic energy has decreased while conserving
the global magnetic helicity of the initial field. Numerical simulations [15–17, 39]
and semi-analytical work [40, 41] have been devoted to study such initial conditions
for fossil fields. They conclude that it must be, to a first approximation, in a non-
force-free stable relaxed equilibrium with a mixed configuration, both poloidal and
toroidal (cf. the right panel of Fig. 2.7) because purely toroidal and poloidal fields
are unstable in stellar radiation zones (see respectively [110] and [63] and the left
panel of Fig. 2.7).

Once the initial non-force-free magnetic configuration (axisymmetric or nonax-
isymmetric) has been established by the initial MHD turbulent relaxation processes,
it interacts with differential rotation. Then, two cases are possible as described by
[100]. In the first case, if the field is strong, the rotation becomes uniform on mag-
netic surfaces due to Alfvén wave phase mixing, which damps the differential ro-
tation; in the axisymmetric case this leads to the Ferraro’s state where the rotation
is frozen along the poloidal field lines (see, for example, [98]) and to a uniform
rotation in the nonaxisymmetric case (the oblique rotators case for example; see,
for example, [81]). Then, the field can only be modified by structural adjustments,
and the mixing is frozen. In the second case, if the field is weak, it could first be-
come axisymmetric if it is nonaxisymmetric because of rotational smoothing, and
then, because of phase mixing, this leads to the Ferraro’s state. However, this picture
could be strongly modified by MHD magnetic instabilities if during the first step of
the phase mixing, the residual differential rotation on each magnetic surface is able
to generate a strong toroidal component of the field that becomes unstable and if
this instability becomes able to trigger a dynamo action through an α-effect; this
question still remains open [2, 14, 93, 101, 123]. The critical value of the field that
gives the limit between the weak and the strong field regimes has been given in [5].
A summary is given in Fig. 2.8.
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Fig. 2.8 Interaction of fossil magnetic field and differential rotation (see also [65, 102])

Let us now take into account the meridional circulation. To understand its inter-
action with the other dynamical processes (the differential rotation and the shear
induced turbulence) in presence of a fossil magnetic field, we shall adopt the picture
of rotational transport as described in Sect. 2.4.1 in the purely hydrodynamical case
and generalize it to the magnetized case. As described previously, meridional cir-
culation in radiation zones are driven by applied torques (internal, like the Lorentz
torque or external, like those induced by stellar winds), structural adjustments during
stellar evolution and turbulent transport. In the case where all these sources vanish,
the meridional circulation dies after an Eddington–Sweet time, and the star settles
in a baroclinic state described by the MHD thermal wind equation. If we apply this
picture to the case of radiation zones with a fossil magnetic field, we thus understand
that the meridional circulation (if we consider a star without structural adjustments
and external torques) will be mainly driven by the residual magnetic torque until the
phase mixing leads the star to a torque-free state. Then, the meridional circulation
advection of angular momentum balances the residual Lorentz torque (see [76] and
[69] and Fig. 2.9).

However, this global picture is only respected if the poloidal field lines are en-
tirely confined in a radiation zone. If the poloidal field connects with the differen-
tially convective envelope in the case of solar-type stars, the differential rotation is
then transmitted along the field lines to their radiative core (see, for example, [32]).
To resolve this problem, [48] (see also [92]) proposed a scenario in which the Ohmic
diffusion of the fossil field into the convective envelope is prevented by its advection
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Fig. 2.9 The transport loop in a differentially rotating magnetized stellar radiation zone (see
also [65])

by the down-flow part of the thermally driven circulation in the tachocline. However,
this circulation has also an up-flow component, which would advect the field into
the convection zone that would then imprint a small differential rotation in the ra-
diation zone. The first detailed calculations to settle the question were achieved in
[45, 46] (see also [56, 115]), who considered 2-D stationary solutions for various
parameters. This work showed that the field lines would penetrate into the convec-
tion zone over a broad region at high latitudes, thus imprinting differential rotation
to the radiation zone. This behavior is now confirmed by 3-D consistent calculations
([26, 103, 104], Fig. 2.10) where authors showed that even a deeply buried magnetic
field will eventually connect with the convection zone, inducing differential rotation
in the radiative core both in the case of axi- and nonaxisymmetric configurations.
Therefore, another transport process seems to be responsible for the uniform rota-
tion in the radiative core of solar-type stars.

2.4.4 Internal Waves

Since the fossil magnetic field seems unable to enforce the observed uniform ro-
tation in the radiative core of the Sun, we must examine the last possible mech-
anism: the transport of angular momentum by the internal waves excited by the
turbulent motions at convection/radiation transitions in stellar interiors, namely the
bases of convective envelopes in low-mass stars and the tops of convective cores in
intermediate-mass and massive ones. The importance of these processes was first
anticipated by [86, 96, 122] (see also [97]).

Let us first discuss the case where modifications of gravity waves by rotation
and magnetic field are not taken into account. In this simplest case, the restoring
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Fig. 2.10 Interaction of a deeply buried axisymmetric fossil magnetic field in the Solar radiative
core with the surrounding convective envelope. During its evolution, the fossil field connects with
the convection zone transmitting its differential rotation to the radiation zone. (Taken from [104],
courtesy Astronomy & Astrophysics)

force operating on waves is the buoyancy force. They thus propagate only in stably
stratified regions, i.e., in the radiative core of low-mass stars. After an excitation of a
whole spectrum of such waves at the base of the convective envelope, they penetrate
into the radiation zone, transporting angular momentum which is deposited where
they are dissipated mainly through thermal diffusion as first described by [117].

Waves that are of short wavelength are first dissipated close to the convection
zone. Prograde waves carry positive angular momentum, and retrograde waves neg-
ative angular momentum. If they propagate in a radiative region, which is rotat-
ing faster than the excitation region, their frequency is Doppler-shifted, leading to
higher dissipation for the prograde waves than for the retrograde waves. This is the
reason why the angular velocity first increases where it was already high, and its
slope with depth steepens until the shear becomes unstable. The induced turbulent
layer then merges with the convective envelope. In the same time, retrograde waves
extract angular momentum at a deeper layer, thus building there a “negative” shear
layer, which takes the place of the former and the cycle repeats. This phenomenon,
which depends on the waves turbulent excitation, is called the Shear Layer Oscil-
lation [107] and is similar to the quasi-biennial oscillation observed in the Earth’s
atmosphere. The question, which must then be answered, is how this thin shear layer
modifies the propagation of waves of lowest frequencies, which are less damped. If
there is no slope in angular velocity, the shear layer is symmetric, and the effect is
the same on the prograde as on the retograde waves. However, if the angular veloc-
ity increases with depth, the prograde waves will be more dissipated, which allows
the retrograde waves to extract angular momentum from the deep interior. This pic-
ture was first studied by [109] using a first approach where only gravity waves and
shear-induced turbulence are taken into account. This was confirmed using complete
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Fig. 2.11 Evolution of the (differential) rotation profile (averaged on latitudes) in a 1.2M� star (its
metallicity is Z = 0.02) with an initial rotation velocity of 50 km s−1. This is obtained making sim-
ulations using the STAREVOL code, where the transport of angular momentum by the meridional
circulation, the shear vertical turbulence, and the internal gravity waves are taken into account.
The black arrows show the successive angular momentum extraction fronts (the first is represented
by the continuous line, and the second one by the dashed line), which are mainly driven by the
angular momentum extraction at the surface by the wind. The curves are labeled according to the
corresponding ages in Gyrs. (Adapted from [107], courtesy Astronomy & Astrophysics)

calculation including also meridional circulation [107]. In this modeling, where hor-
izontal differential rotation is damped by the strong horizontal turbulence, internal
gravity waves succeed in achieving nearly uniform rotation in solar-type stars at the
solar age with successive angular momentum extraction fronts (cf. Fig. 2.11).

These fronts are mainly driven by wave-damping and the meridional circulation,
while the shear-induced turbulence acts only in regions of strong differential rota-
tion. Furthermore, efficiency of this transport is strongly correlated with the exter-
nal extraction of angular momentum by magnetic wind, which creates a differential
rotation between the convective envelope and the radiative core, which feeds the
transport by waves. Moreover, as in Sects. 2.4.1 and 2.4.3, the transport loop can be
identified: first, external torques and internal stresses (i.e., viscous ones related to
the shear-induced turbulence and waves Reynolds stresses) sustain the large-scale
meridional circulation that advects entropy leading to a new temperature distribution
and thus to a new differential rotation profile (see Fig. 2.12). Furthermore, models
including waves predict the observed Li abundance, which is a strong constraint for
stellar modeling.
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Fig. 2.12 Hydrodynamical transport loop in stellar radiation zones when taking into account inter-
nal waves. The different applied torques (winds and tides) are shown. (Adapted from [67], courtesy
Astronomy & Astrophysics)

Now, work has been undertaken to obtain a more complete picture of this promis-
ing mechanism in the whole Hertzsprung–Russell diagram [108].

Firstly, theoretical studies [11, 94] and numerical simulations aim to determine
the wave spectrum excited by convective envelopes and cores. For numerical simu-
lations, results in Cartesian simulations [36, 54, 55] show a broad spectrum with an
overevaluated energy flux in 2-D. More recently, integrated simulation of the Sun,
first in 2-D in the solar equatorial plane [89] and then in 3-D [30], show a complex
excited spectrum, which we should aim to understand.

Secondly, in the case of waves that have frequencies close to the inertial (2Ω) or
to the Alfvén (ωA) frequencies, the Coriolis acceleration and the Lorentz force,
which modifies their propagation, their damping, and thus the related transport,
must be taken into account. First, in the purely hydrodynamical case, waves become
gravito-inertial waves [7, 8, 35, 60]. Two main wave families are then identified:
the super-inertial gravito-inertial waves (σ > 2Ω), which propagate in the whole
sphere, and the sub-inertial (σ ≤ 2Ω), which are trapped in an equatorial belt (see
Fig. 2.13). In this context, transport by gravito-inertial waves has been studied both
in the case of a weak [71] and of a general differential rotation [58, 59, 64]. Then,
the Coriolis acceleration’s main action is to reduce the efficiency of the transport.
Next, the effect of a toroidal magnetic field at the bottom of the tachocline and in the
radiative core has been studied [57, 61, 66, 67, 90, 91, 95], and latitudinal trapping
phenomena such as in the gravito-inertial wave case have been isolated. Further-
more, the azimuthal field acts, depending on the considered frequency, as a vertical
filter. However, when taking simultaneously the action of the Coriolis acceleration
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Fig. 2.13 Impact of (differential) rotation and magnetic fields on internal waves propagation and
the related transport of angular momentum. Left: Equatorial trapping of a sub-inertial gravito-in-
ertial wave (with a frequency σ = 500 n Hz) in the differentially rotating radiation zone of a 1M�
star, which has a given uniform rotation Ωm = 430 n Hz from 0.2 to 0.7R� and a core that rotates
10 times faster [64]. The colored region is the one where waves are propagative, while the black
one is the “dead-region” for such propagation. Right: Net bias in the convection’s energy transmis-
sion to prograde and retrograde waves (here for an azimuthal number m= 1) as a function of the
wave Rossby (Ro = σ/2Ω) and Elsasser (ΛE = ω2

A/Ωσ ) numbers; because of the stronger equa-
torial trapping of prograde waves, the retrograde are favored as well as the related net extraction of
angular momentum. (Taken from [67], courtesy Astronomy & Astrophysics)

and of the Lorentz force related to a toroidal field into account, even if the effi-
ciency of the transport can be strongly affected by trappings both in the horizontal
and in the vertical directions, the results obtained by [107] of a net extraction of
angular momentum because of a net bias in favor of retrograde waves is conserved
in low-mass stars (see Fig. 2.13).

Finally, nonlinear effects such as wave braking at the center of the star are now
studied [1]; some signs appear of a possible acceleration of the central rotation by
this mechanism [9].

2.5 Conclusion

Work to go beyond the classical static picture of stars to get a global understanding
of their dynamics is thus in a golden age. From dynamical to secular time scales
1-D, 2-D, and 3-D stellar models, including macroscopic transport processes, now
allow us to enter into the details of the highly nonlinear couplings between differen-
tial rotation, meridional circulations, turbulence, dynamo and fossil magnetic fields,
and waves. Moreover, we feel now how the impact of the star’s environment is a
key actor for internal transport processes. Therefore, as physical modeling becomes
more and more complex and refined, it is clear that integrated models that take into
account all the known internal processes and external constraints such as winds or
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accretion [53, 72, 74, 85] and tides [83, 87, 116, 119] must be built. In order to guide
such construction, constraints obtained by helioseismology, asteroseismology, and
spectropolarimetry will be crucial.
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Chapter 3
Ab Initio Modelling of Steady Rotating Stars

Michel Rieutord and Francisco Espinosa Lara

Abstract Modelling isolated rotating stars at any rotation rate is a challenge for
the next generation of stellar models. These models will couple dynamical aspects
of rotating stars, like angular momentum and chemicals transport, with classical
chemical evolution, gravitational contraction or mass-loss. Such modelling needs
to be achieved in two dimensions, combining the calculation of the structure of
the star, its mean flows and the time-evolution of the whole. We present here a
first step in this challenging programme. It leads to the first self-consistent two-
dimensional models of rotating stars in a steady state generated by the ESTER code.
In these models the structure (pressure, density and temperature) and the flow fields
are computed in a self-consistent way allowing the prediction of the differential
rotation and the associated meridian circulation of the stars. After a presentation of
the physical properties of such models and the numerical methods at work, we give
the first grid of such models describing massive and intermediate-mass stars for a
selection of rotation rates up to 90 % of the breakup angular velocity.

3.1 Introduction

3.1.1 The Astrophysical Context

In the last ten years rotation has become an essential part of stellar models. It in-
fluences all stages of stellar evolution. For instance, during the formation process,
a drastic reduction of the specific angular momentum, by a factor of order 105, is
observed when matter passes from the initial molecular cloud to the newly born
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main-sequence star. Later, during the evolution of the star on the main sequence,
many hydrodynamical instabilities, along with meridian circulations, drive some
mixing in the radiative zones. The effects of this mixing are actually observed on
the surface of many stars, which show elements obviously synthesized in their core
region. In addition, recent work by [19] shows that rotation plays a role in the nu-
cleosynthesis of s-elements in massive stars. Effects of rotation are also thought to
be important in understanding the evolution and “yields” of the first generation of
stars. Lacking in metals, these stars were more compact than present stars and had
also weaker winds. Thus, their rotation was certainly faster than that of present day
stars. It is therefore crucial to master rotational effects in order to reconstruct the
history of metal enrichment in galaxies and to understand how the observed stars
have been influenced by the first generation. Lastly, we may mention an example of
the importance of rotation in the end of the life of stars: recent works on the gravita-
tional collapse of massive stars (e.g., [29]) insist on the importance of the combined
effect of rotation and magnetic fields to model the explosion of supernovae and the
associated production of a gamma-ray burst. The few foregoing examples are just
illustrative, since rotation influences many other aspects of stellar physics like the
oscillation spectrum, mass-loss etc.

3.1.2 The 1D Models

Presently, rotation is included in spherically symmetric stellar models through the
approach proposed by [43]. Since these models are one-dimensional, all of the ef-
fects of rotation are averaged on spheres. Thus differential rotation is only in the
radial direction (said to be shellular), and no meridian flow appears explicitly. Be-
cause only the first terms of the spherical harmonic expansion of fields are included,
this modelling is valid at small rotation rates. An equally important part of the mod-
els is that they assume the existence of some small-scale turbulence in the radiative
regions that efficiently transport momentum horizontally (i.e. on isobars), erasing
latitudinal gradients of angular velocity.

Although limited to slow rotation and needing some ad hoc constants (like tur-
bulent diffusivities), this approach has the great merit of allowing the use of 1D
models, which are now very precise as far as microphysics is concerned. It thus
allowed investigators to reproduce many observed features of stars: surface abun-
dance of lithium as a function mass (e.g., [6]), the (relative) high number of red
super-giants in low-metallicity galaxies (e.g., [27]), or the ratio of type Ibc to type II
supernovae (e.g., [30]), etc.

Although these examples reflect a truly successful modelling, the understanding
of the effects of rotation is still incomplete because in many circumstances rotation
is fast. Stellar conditions thus do not meet the requirements of the models, and the
use of Zahn’s approach becomes dubious. Clearly, we are missing a more detailed
view of reality. For instance, no one knows the rotation rates that are allowed in the
foregoing 1D models.



3 Ab Initio Modelling of Steady Rotating Stars 51

3.1.3 The History of 2D Models of Rotating Stars

The solution to the deficiencies of 1D models about rotation will come from the use
of multidimensional models (two-dimensional at least), which include the mean-
field hydrodynamics along with the centrifugal distortion of the star. Unfortunately,
building such models turned out to be a very difficult challenge. The story of this
modelling is illuminating, and we briefly summarize it below, following the more
detailed account of [37].

The first step dates back to polytropic hydrostatic models of [25]. An impor-
tant step forward was made by a US group around Bodenheimer and Ostriker
[1–3, 22, 28, 31–33]. Their works are based on the Self-Consistent Field method
which solves Poisson’s equation for the gravitational potential, �φ = 4πGρ, with
the Green function, namely

φ(x)=−G
∫

ρ(x′)
|x− x′| d

3x′.

This solution readily includes the boundary conditions at infinity for the gravita-
tional field.

Making general stellar models was impeded by many numerical difficulties. The
codes could not deal with stellar masses less than 9M� nor with very rapid rotation.
An indication of the precision reached by these models is given by the virial test
(see below). Reference [22] found it to be around 4× 10−3.

Soon after, M. Clement took up the challenge and solved directly the Poisson
equation with a finite difference discretization [7]. Results improved as testified by
a better virial test at 2× 10−4.

Another series of work aimed at the construction of 2D models was published by
the Japanese school led by Eriguchi (see [11, 14]). These works led to the first at-
tempts to account for the baroclinicity of radiative zones [41, 42], but the neglecting
of viscosity imposed the prescription of some ad hoc constraints. The series ended
with the work of [40], who improved the microphysics but relaxed the dynamics,
considering only barotropic models.

To be complete, we need to mention the work of [12, 13] who attacked the prob-
lem in a different way, using a mapping of the star. The grid points are indeed
mapped to the sphere through the relation

ri(θk)= ζiRs(θk)
where ζ is a new radial variable spanning [0,1]. Finite differences are used for
both variables ζ and θ . The ensuing code was quite robust, being able to compute
configurations quite far from the pure sphere, but the precision of calculation as
monitored by the virial test remained around 5× 10−4.

The more recent efforts on 2D modelling not related to the ESTER project have
been those of [39], motivated by the need of models of rapidly rotating stars for
asteroseismology, and those of [23, 24], motivated by the discovery of the extreme
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flattening of the Be star Achernar (e.g., [10]). These two works use barotropic mod-
els with an imposed rotation law. We note that [23] used a new version of the Self-
Consistent Field technique which leads to a much more robust code, not restricted
to a given mass range. These models have also been used to investigate the acoustic
oscillation spectrum of rapidly rotating stars by [34, 35]. Lastly, [8] worked out a
series of 2D models with uniform rotation for masses between 1.625 and 8M�.

3.2 The Route to Ideal Models

As may be observed, the weakest point of the foregoing models is their lack of dy-
namics as well as of time evolution. We recall that any radiative region of a rotating
star is pervaded by baroclinic flows that appear in the first place as a differential
rotation and a meridian circulation (e.g., [36]). These flows control some turbulence
there and affect the whole star, playing an important role in the transport of elements
and momentum.

We may now wonder what would be the ideal model of an isolated rapidly rotat-
ing star. This question was addressed in [37], and we reproduce here his discussion,
which is still fully relevant:

Such a model should describe the mean state of a star at any time of its life and
especially the new quantity specific to these stars, angular momentum.

Unlike a non-rotating star, which is a one-dimensional object (in a large-scale de-
scription) which needs only scalar fields ([we] forget magnetic fields), a rotating star
is, at least, a two-dimensional object with, at least, one vector field in addition to all
scalar fields. Hence, complexity increases not only by the multidimensional nature
of the model but also by the number of physical quantities to be determined. This
implies that the ideal model deals consistently with angular momentum and espe-
cially the losses and gains through stellar winds and accretion. Such a model should
also take into account the baroclinicity of radiative zones and there, the anisotropic
turbulence which appears through shear instabilities; it should also include a mean-
field theory of convection to forecast Reynolds stresses and heat flux. Of course, ob-
servers would like to know the emissivity of the atmosphere as a function of latitude
(if they use interferometry) or as a function of wavelength if they do spectroscopy.
But if they do asteroseismology, they surely wish to know the eigenspectra of these
objects.

“The foregoing points show that progress in the understanding of rotating stars
needs also some advances in the following questions of stellar physics:

• How angular momentum is distributed in a star and how is it input or output with
what consequences?
• The immediately following question concerns the nature of the Reynolds stresses

in the convective and radiative zones.
• Then, what is the baroclinic state of the radiative regions?
• Similarly, the atmosphere is in a baroclinic state and cannot be at rest: how strong

are the differential rotation and the meridional currents? Does the atmosphere
develop strong azimuthal winds streaming around the star like Jupiter’s winds?
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• Gravity darkening can be so efficient that equatorial regions are cool enough to
develop convection; this raises the question of the latitude dependence of emis-
sivity of the atmosphere beyond the von Zeipel model (see the attempt of [26]).
• [we] did not mention magnetic fields. Clearly, they multiply the number of prob-

lems, and first steps should ignore them if possible.”

3.3 Setting the Problem

Many of the foregoing questions can be answered by steady rotating stars, which
evolve neither dynamically by losing mass and angular momentum, nor by gravi-
tationally contracting, nor by nuclear evolution. As a first step towards the general
models, we concentrate on this simpler problem.

3.3.1 Equations for a Steady Rotating Star

We consider a lonely rotating star in a steady state. The star is governed by the
following equations for macroscopic quantities:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�φ = 4πGρ,

ρT v ·∇s =−div F+ ε∗,
ρ(2�∗ ∧ v+ v ·∇v)=−∇P − ρ∇(φ − 1

2Ω
2∗s2)+ Fv,

div(ρv)= 0.

(3.1)

The first equation is Poisson’s equation, which relates the mass distribution (ρ is
the density) and the gravitational potential φ (G is the gravitation constant). The
second equation is the heat equation, which relates the advection of entropy s by the
velocity field v when nuclear heat sources ε∗ are present, with the heat flux F. The
third equation is the momentum equation written in a frame rotating at angular ve-
locity �∗. P is the pressure field, and Fv the viscous force. Finally the last equation
ensures mass conservation.

These equations need to be completed by those describing the microphysics and
the transport properties of stellar matter. We propose to describe the heat flux with

F=−χr∇T − χturbT

RM

∇s,

where χr is the radiative conductivity, and χturb a turbulent heat conductivity. In this
expression the second term is assumed to represent the convective heat flux, which
is supposed to be controlled by the entropy gradient. RM =R/M where R is the
ideal gas constant and M the mean molecular mass of the fluid.
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A realistic modelling of the viscous force would be derived from the turbulent
Reynolds stresses; however, before reaching this long term goal, we assume the
simple model of a constant dynamical viscosity μ, namely:

Fv = μ
(

�v+ 1

3
∇ div v

)

.

The microphysics is completed by the three expressions

⎧

⎪⎪⎨

⎪⎪⎩

P ≡ P(ρ,T ),
κ ≡ κ(ρ,T ),
ε∗ ≡ ε∗(ρ,T ),

(3.2)

which respectively give the equation of state, the opacities and the nuclear heat
generation. We recall that in radiative diffusive equilibrium, heat conductivity is
related to opacity by

χr = 16σT 3

3κρ
,

where σ is the Stefan–Boltzmann constant.

3.3.2 Boundary Conditions—Angular Momentum Condition

The previous system of partial differential equations needs to be completed by
boundary conditions that affect the gravitational potential, the velocity field, the
pressure and temperature.

At the star centre these conditions are simply that all functions should be reg-
ular. At the surface things are more difficult. First because the surface of a star is
ill-defined. To simplify, we shall assume that the surface is an isobar or an equipo-
tential. If the properties of the model are independent of the chosen surface, then we
may say that the choice of the bounding surface is not crucial. On this surface we
have to:

• Match the gravitational potential to that in the vacuum, which vanishes at infinity;
• Impose stress-free conditions on the velocity field, namely that

v · n= 0 and
([σ ]n)∧ n= 0,

where [σ ] is the stress tensor. The fluid is assumed to not flow outside the star
and to feel no horizontal stress (n is the outer normal of the star);
• Specify the pressure on the surface. A simple choice is Ps = 2

3
g
κ

, where κ and g
are the averaged opacity and gravity on this surface;
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• Impose the temperature boundary conditions. To simplify, we assume that the star
radiates locally as a black body. Therefore we ask

n ·∇T + T/LT = 0,

where LT is specifying the scale of temperature variations near the surface. We
note that if the diffusion approximation is used, then LT = 16/(3ρκ), κ being the
opacity.

We note that this problem, as formulated by Eqs. (3.1), is not fully constrained
because the total angular momentum is not specified. We have specified the rotation
rate of the frame where the solution is computed, but this is not specifying the rota-
tion rate of matter, which is the combination of both v and the solid body rotation
of the frame. To remove this degeneracy, we may either specify the total angular
momentum of the matter or specify the equatorial velocity of the star. In the first
case we may write

∫

(V )

r sin θρuϕ dV = 0

and, in the second case,

vϕ(r =R,θ = π/2)= 0.

The first condition just specifies that all the angular momentum of the star is in the
solid body rotation of the frame, while the second just says that the frame is rotating
at the equatorial angular velocity.

3.3.3 Scalings

As formulated by (3.1), the problem is that of the steady flow of a self-gravitating
compressible gas subject to some heat sources. As all fluid mechanics problem we
first need to choose the various relevant scales that feature the physical quantities.
These scales are used to rewrite the set of equations with dimensionless variables.
We converged to the following set:

Length scale: equatorial radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R
Time scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (R2/RMTc)

1/2

Velocity scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V =√RMTc
Density scale: central density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ρc
Temperature scale: central temperature . . . . . . . . . . . . . . . . . . . . . . . . . . Tc
Pressure scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RMρcTc
Entropy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RM

Potential scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4πGR2ρc

This scaling uses the sound travel time as the time scale, and as a consequence
the velocity field is scaled by a central sound velocity. Accordingly, the potential
scale would be V 2, but we prefer to use 4πGR2ρc, which comes from the free-fall
time scale.
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3.3.4 Dimensionless Equations and Numbers

Using the foregoing scaling leads to the following dimensionless equations:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(2Ωez ∧ u+ (u ·∇)u)
=−∇p− ρ∇(Λpψ − 1

2Ω
2s2)+E(�u+ 1

3∇ div u),

ρT u ·∇s = div(χ∇T + χtT∇s)+ ε,
divρu= 0,

�ψ = ρ,

(3.3)

with the numbers

Ω = Ω∗R√
RMTc

, E = μ

ρcR
√

RMTc
, Λp = 4πGR2ρc

RMTc

and the dimensionless functions

ψ = φ∗
4πGR2ρc

, χ = χr(ρ,T )

RMρcR
√

RMTc
, ε = Rε∗(ρ,T )

ρc(RMTc)3/2
.

Although the critical angular velocity can only be computed after the completion
of the calculation, it is useful to define the pseudo-critical angular velocity Ωc =√

4πGρc,

Ω∗
Ωc
= Ω

√

Λp
,

and introduce other dimensionless functions, namely

ε = ε/ε(0), χ = χ/χ(0), ΛT = ε(0)
χ(0)

= R
2ε∗(ρc, Tc)
Tcχr(ρc, Tc)

.

3.3.5 Global Parameters ρc,Tc,R of the Star Model

Let us suppose that we know the mass of the star M . How can the foregoing equa-
tions be used to determine the stellar quantities, especially ρc,Tc and R?

If we have solved the problem, we observe that Λp is known, which gives a first
relation between ρc, Tc and R2. In the same manner, the central value of ε gives a
relation between ρc and Tc:

ε(0)= Rε∗(ρc, Tc)
ρc(RMTc)3/2

.
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Thus, taking into account that the mass of the star expresses as a function of R
and ρc, namely

M = ρcR3
∫

(V )

ρ dV,

the expressions of Λp and ε(0) completely determine the parameters of the stars,
i.e. the radius, the central temperature and central density.

3.3.6 Numerical Method

The resolution of the set of Eqs. (3.3) imposes some numerical challenges. First, the
shape of a rotating star is spheroidal and not known a priori. We thus use a map-
ping of coordinates adapted to this geometry and modify it during the calculation.
Secondly, as the problem is two-dimensional, its size quickly grows with the res-
olution, thus imposing the use of an efficient numerical method that should be, at
the same time, precise enough to deal with velocity fields. Finally, as the problem is
nonlinear, we solve it using an iterative procedure.

3.3.6.1 Computational Domain and Mapping of Coordinates

Following [4], we use a mapping of the coordinates r(ζ, θ) adapted to the geometry
of the star. The new spheroidal coordinates (ζ, θ) are defined in such a way that
ζ = 1 represents the surface of the star, θ being the colatitude. In so doing, the
surface of the star is a surface of coordinate, a property that very much simplifies
the implementation of boundary conditions.

The star can be subdivided in several domains, and in each domain the relation
between spherical and spheroidal coordinates is given by the general expression

r = aiζ +Ai(ζ )
[

Ri+1(θ)− aiηi+1
]+Bi(ζ )

[

Ri(θ)− aiηi
]

, ηi ≤ ζ ≤ ηi+1,

(3.4)
where Bi(ζ )= 1−Ai(ζ ). Here Ri(θ) and Ri+1(θ) represent the internal and exter-
nal boundary of the domain respectively, and ai , Ai(ζ ) are chosen to satisfy some
properties at the boundaries between the different domains. In particular, we want

r(ζ = ηi, θ)=Ri(θ) and r(ζ = ηi+1, θ)=Ri+1(θ);
then it should be that Ai(ηi)= 0 and Ai(ηi+1)= 1. The values of the parameters ai
should be such that r is monotonically increasing with ζ .

A nice property of this mapping is that it reduces to the spherical coordinates near
the centre. The use of a spherical harmonic expansion of the unknowns is therefore
possible, and the asymptotic properties of the solutions near the centre are well
known. The decomposition of the stellar domain into multi-subdomains improves
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Fig. 3.1 The computational
domain: the star at the centre
is divided into sub-domains
(layers) that ease the
computations. It is
surrounded by a vacuum
domain limited by a sphere
that allows an easy
implementation of the
boundary conditions on the
gravitational potential

the efficiency of the spectral methods to be used, especially in dealing with discon-
tinuities (interface between a convective and radiative region) and in dealing with
the large pressure and density variations.

As we have already mentioned, at the stellar surface, the gravitational potential
must match the vacuum solution vanishing at infinity. There is no easy way of im-
posing this condition on a surface with arbitrary shape. To circumvent this difficulty,
we follow [4], who use an additional domain such that 1≤ ζ ≤ 2, and whose outer
boundary is a sphere as shown in Fig. 3.1. On this sphere bounding the computa-
tional domain, the gravitational potential can meet simple boundary conditions for
each of its spherical harmonics, namely

∂φ�

∂r
+ (�+ 1)φ�

r
= 0,

which ensure the matching with a field vanishing at infinity. Figure 3.1 shows the
full computational domain along with the key surfaces of the mapping.

To write down Eqs. (3.3), the operators should be written with the spheroidal
coordinates. Let us first recall that the relation between these coordinates and the
classical spherical coordinates is

r ≡ r(ζ, θ ′), θ = θ ′, ϕ = ϕ′. (3.5)

In order to manipulate these new coordinates, and especially the vectors, we use the
natural basis defined by

Eζ = ∂r
∂ζ
, Eθ = ∂r

∂θ
, Eϕ = ∂r

∂ϕ
.
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Making explicit these definitions, we can express the covariant and contravariant
vectors, namely

Eζ = rζ er , Eθ = rθer + reθ , Eϕ = r sin θeϕ,

Eζ = er
rζ
− rθ

rrζ
eθ , Eθ = eθ

r
, Eϕ = eϕ

r sin θ
,

as functions of the usual unit vectors associated with spherical coordinates
(er , eθ , eϕ). We set:

rζ = ∂r
∂ζ
, rθ = ∂r

∂θ
.

Passing from the spherical to the spheroidal coordinates may be done using the
following relations:

∂f

∂r
= 1

rζ

∂f

∂ζ
,

∂f

∂θ
= ∂f
∂θ ′
− rθ
rζ

∂f

∂ζ
,

∂f

∂ϕ
= ∂f

∂ϕ′
. (3.6)

These expressions give the metric tensor whose covariant (gij = Ei · Ej ) and
contravariant (gij = Ei ·Ej ) components are:

gζζ = r2
ζ , gζθ = rζ rθ , gθθ = r2 + r2

θ , gϕϕ = r2 sin2 θ, (3.7)

gζζ = r
2 + r2

θ

r2r2
ζ

, gζθ =− rθ

r2rζ
, gθθ = 1

r2
, gϕϕ = 1

r2 sin2 θ
, (3.8)

and gζϕ = gθϕ = gζϕ = gθϕ = 0. At r = 0, gθθ and gϕϕ are singular. The metric
determinant is such that

√|g| = r2rζ sin θ and
∣
∣εijk

∣
∣= 1√|g| .

The volume element is given by

dV =√|g|dζ dθ dϕ = r2rζ sin θ dζ dθ dϕ = r2rζ dζ dΩ.

As an example, the Poisson equation for the gravitational potential takes the form

�ψ = gζζ ∂
2ψ

∂ζ 2
+

[
2

rrζ

(

1+ rθ rζθ
rrζ

)

− gζζ rζζ
rζ
− rθθ + rθ cot θ

r2rζ

]
∂ψ

∂ζ

− 2rθ
r2rζ

∂2ψ

∂ζ∂θ
+ 1

r2

[
1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+ 1

sin2 θ

∂2ψ

∂ϕ2

]

= ρ,

where rζζ = ∂2r

∂ζ 2 , rθθ = ∂2r

∂θ2 and rζθ = ∂2r
∂ζ∂θ

.
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3.3.6.2 Numerical Method

As we have mentioned earlier, due to the 2D nature of the problem, the size of the
calculation will increase very quickly with the number of grid points. This motivates
the use of a high-order method that can achieve high precision with low-resolution
grids, optimizing computation time and memory requirements.

An additional difficulty comes from the fact that the overall structure of the star
(profile of pressure, temperature, etc.) and its dynamics (rotation, meridional circu-
lation) must be computed simultaneously. This requires a great precision and the
ability to calculate higher-order derivatives of some variables.

Spectral methods are specially well suited for this kind of problem [5, 20]. These
methods expand the solutions on a basis of orthogonal functions. The approximation
of the solution using n basis functions will be

φ(n)(x)=
n−1
∑

l=0

alPl(x). (3.9)

The basis functions Pl(x) used are usually a set of orthogonal polynomials, such as
the Legendre or Chebyshev polynomials. In our case it can be shown that if φ(x) is
infinitely differentiable, the approximate function φ(n)(x) will converge to the exact
solution φ(x) faster than any power of the grid resolution h. This expresses the fact
that, in spectral methods, the error decreases exponentially with the number of basis
functions n [18]. The ith derivative of a function is approximated by

(
diφ

dxi

)(n)

=
n−1
∑

l=0

al
diPl

dxi
. (3.10)

Due to the nonlinearity of the equations that we have to solve, we have to cal-
culate the product of two variables of the model in an efficient way. Unfortunately,
multiplication cannot be easily performed using the spectral coefficients, as it in-
volves a convolution in the transformed space. This can be solved by using an alter-
nate approach of spectral methods, with the same properties, called pseudospectral
collocation methods. In a pseudospectral method the variables are not represented
by their spectral coefficients, but by their values at certain points xi called the col-
location points. Then, all the calculations can be performed in the real space.

The basis functions are orthogonal against some scalar product

〈Pl,Pm〉 = δlm.
Then, we can get the spectral coefficients al by

al =
〈

φ(x),Pl(x)
〉

.

The scalar product (usually a weighted integral over the interval) can be calculated
using the Gaussian quadrature formula associated with the family of orthogonal
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polynomials Pl ,

al =
n−1
∑

j=0

wjPl(xj )φ(xj ),

where xj and wj are the nodes and weights of the Gaussian quadrature. Note that
xj are the collocation points. Then, the first derivative at the collocation points can
be obtained as

φ′(xi)=
n−1
∑

l=0

(
n−1
∑

j=0

wjPl(xj )φ(xj )

)

P ′l (xi)

=
n−1
∑

j=0

(
n−1
∑

l=0

wjPl(xj )P
′
l (xi)

)

φ(xj )=
n−1
∑

j=0

Dijφ(xj ),

where Dij is the differentiation matrix.
We use this procedure in the radial and latitudinal directions to transform the

original system of nonlinear partial differential equations into a system of nonlinear
algebraic equations. For the latitudinal direction, we use Legendre polynomials as
the basis functions, while for the radial direction, we use Chebyshev polynomials
associated with the Gauss–Lobatto collocation points. This grid includes the points
at the extrema in order to deal with boundary conditions.

The nice convergence properties of spectral and pseudospectral methods are only
valid for smooth functions that are infinitely differentiable. However, it is known that
inside a star there will be some discontinuities, as for example, at the boundary be-
tween a convective core and a radiative envelope. This difficulty is solved by using
a multi-domain approach, in a way that the variables are continuous and differen-
tiable within each domain but not necessarily at the boundaries between different
domains.

3.3.6.3 Iterative Procedure

The system of algebraic equations resulting from the discretization of the problem
is nonlinear and is solved using an iterative method. For that, we either use the well-
known Newton’s method or a relaxation method. For Newton’s method, we write
the problem in the form

F(x)= 0, (3.11)

where the vector function F represents the equations that we want to solve, and
x is the vector containing all the independent variables of the problem (pressure,
temperature, etc.) including the shape of the surface, which is not known a priori.
The equations are linearized using the Jacobian matrix of F(x) defined as

δF(x)= J(x)δx. (3.12)
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Then the correction to the solution in the kth iteration will be calculated solving the
linear system

J
(

x(k)
)

δx(k) =−δF(x(k)), (3.13)

and we set x(k+1) = x(k) + δx(k).
With an appropriate initial approximation x(0), Newton’s method has quadratic

convergence. In practice, a rotating stellar model can be calculated in approximately
10 iterations starting with the corresponding non-rotating model.

3.3.6.4 The Case of Flow Fields

The computation of the flow field is certainly the most delicate part of the solution.
Its computation needs to circumvent two difficulties: first, the flow faces very large
variations of the density (typically eight orders of magnitude), and second, the low
viscosity of the stellar fluid. Indeed, this latter complication implies that the flows
need to be computed within the asymptotic regime of low Ekman numbers while the
zero viscosity solution is degenerate for the linear part of the velocity operator (any
geostrophic flow may be added to a solution; see [36] for detailed explanations). We
shall present this rather technical point in a separate work [17].

3.3.7 Tests of the Results

We checked the results with two global tests: the virial theorem and the global bal-
ance of energy.

3.3.7.1 The Virial Test

Let us first present the virial test. For this, we recall that the equations of a steady
flow in a rotating frame are:

2�∧ ρu+ ρu ·∇u=−ρ∇φ + ρΩ2ses +Div[σ ],
divρu= 0,

with the boundary conditions on the velocity field u · n= 0 and n∧ [σ ]n= 0. The
virial equality is obtained by integrating the scalar product of r with the momentum
equation over the fluid’s volume. Hence, we have to evaluate the following integrals:

• The z-component of the relative angular momentum
∫

(V )

r · 2�∧ ρudV =−2� ·
∫

(V )

r∧ ρudV =−2ΩLz.
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• The gravitational energy

−
∫

(V )

r · ρ∇φ dV = 1

2

∫

(V )

ρφ d3r=W.

• The kinetic energy due to bulk rotation as measured by the frame rotation
∫

(V )

r · ρΩ2ses dV =
∫

(V )

ρs2 dV = IΩ2,

where I is the moment of inertia.
• The relative kinetic energy

∫

(V )

r · ρu ·∇udV =−
∫

(V )

ρu2 dV =−2Trel.

• The stress integral
∫

(V )

r ·Div[σ ]dV =
∫

(S)

riσij dSj −
∫

(V )

σii dV .

Stellar gas is assumed to be a Newtonian fluid without volume viscosity, and
hence the stress tensor is

σij = μcij − pδij ,
where [c] is the shear tensor (cij = ∂ivj + ∂j vi − 2(∂kvk)δij /3), so that σii =
−3p.

Thus the virial equality may be written

2Trel + IΩ2∗ +W + 3P + Is + 2Ω∗Lz = 0

or, with non-dimensional quantities,

2Trel + IΩ2 +ΛpW + 3P + Is + 2ΩLz = 0, (3.14)

where Is is the surface integral that appears in the stress integral. In the case of a
steady configuration like the one under consideration, the surface integral is esti-
mated as follows:

Is =
∫

(S)

μricij dSj −
∫

(S)

pr · dS

with

n= Eζ
/∥
∥Eζ

∥
∥, r · n= r

rζ
√

gζζ
, dS = r

√

r2 + r2
θ dΩ.

Using non-dimensional quantities, this leads to

Is =
∫

4π

[

E

(

2∂rur − 2

3
div u− rθ

r

(
1

r

∂ur

∂θ
+ ∂uθ
∂r
− uθ
r

))

− p(θ)
]

r3 dΩ.



64 M. Rieutord and F. Espinosa Lara

3.3.7.2 The Energy Test

Another test of internal coherence of the solutions is provided by the energy balance
between sources and losses. The integral of the entropy equation over the fluid’s
volume gives

∫

(V )

ρT u ·∇s dV =
∫

(S)

(χ∇T + χtT∇s) · dS+
∫

(V )

ε dV .

In the case of radiative envelopes at zero Prandtl number, this equation can be sim-
plified to

∫

(S)

(χ∇T ) · dS+
∫

(V )

ε dV = 0.

3.4 Some Results

The foregoing algorithm has been used to compute models of rotating stars in a
steady state. For these models, we use an analytic expression for the energy genera-
tion rate, namely

ε∗(ρ,T ,X,Z)= ε0(X,Z)ρ
2T −2/3 exp

(

A/T 1/3)

as in [15]. It is completed by the use of OPAL tables for the computation of the
opacity and the derivation of the density from the equation of state (X = 0.7 and
Z = 0.02 with solar composition of [21]).

We computed a few models of stars with a convective core, assumed to be an
isentropic region, and with a radiative envelope. Presently, no convective envelope
can be included in the models, which are therefore limited to stars with masses
above 1.5M�.

Numerical difficulties come both from the high density and pressure contrast
between centre and from high rotation rates. At the time of writing (April 2012) the
most extreme models deal with

psurf/pcentre = 10−14 and Ω/ΩK = 0.9.

The latter rotation corresponds to a flattening of 0.3. For these models, the spatial
resolution uses a spherical harmonics series truncated at L= 64 and N = 400 col-
location points on the radial grid, which are distributed over eight domains.

As far as the velocity field is concerned, we recall that the baroclinic flows that
pervade the radiative region are computed in the asymptotic limit of vanishing Ek-
man numbers. Thus, the Prandtl number is also set to zero and heat advection by
meridional flows is neglected. Figures 3.2 and 3.3 illustrate the differential rotation
that is forced by the baroclinic torque. As also observed in previous (simpler) mod-
els of [15] and [38], the core is rotating faster than the envelope. The differential
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Fig. 3.2 Differential rotation
in a 5M� stellar model
rotating at Ω = 0.7ΩK

Fig. 3.3 The surface rotation
as a function of colatitude.
The stellar model is the same
as that of Fig. 3.2

rotation is cylindrical in the isentropic core (as required by the Taylor–Proudman
theorem) and almost shellular in the inner part of the radiative envelope.

The meridional circulation shown in Fig. 3.4 is dominated by the streamlines of
the Stewartson layers lying along the tangent cylinder of the convective core. This
flow pattern should not be taken at face value since the interior flows are computed
without viscosity. The balance of forces in the Stewartson layer cannot be ensured,
and therefore the flow pattern depends on the grid resolution.

In Fig. 3.5, we provide a view of the squared Brunt–Väisälä frequency. This
shows the anisotropy of the buoyancy force, which, especially in the outer layers,
influences the gravito-inertial modes that are part of the oscillation spectrum of such
stars [9].

Besides the dynamics, we have also investigated the thermal structure of rotating
stars and, more specifically, the distribution of the heat flux as a function of latitude.
In [16], 2D models have been used to validate a very simple model of the latitudinal
variations of the flux, which depends on a single parameter Ω/ΩK . Such models
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Fig. 3.4 Streamlines of the
meridian circulation
associated with the
differential rotation shown in
Fig. 3.2. Solid lines show
counterclockwise circulation,
and dashed lines clockwise
one

Fig. 3.5 The square of the
Brunt–Väisälä frequency
distribution in a meridian
plane

are based on the idea that within an envelope the heat flux F satisfies div F= 0 and
is almost anti-parallel to the local effective gravity ge . Since the mass distribution
inside massive stars is concentrated, the Roche model can be used, leading to lati-
tudinal flux variations that only depend on the rotation rate. This simple model has
been successfully compared with the very few observations that are available and
with complete two-dimensional models [16]. As shown in Fig. 3.6, the two mod-
els nicely match and notably differ from the model of von Zeipel, which predicts
that Teff ∝ g1/4

e as a consequence of neglecting of the baroclinicity of the configura-
tion.

In Tables 3.1 and 3.2 we show the physical parameters obtained from the calcu-
lations of a series of stellar models with masses between 3 and 20M� and rotation
rates up to 90 % of the breakup angular velocity. The models have been calculated



3 Ab Initio Modelling of Steady Rotating Stars 67

Fig. 3.6 Latitudinal flux
variation (gravity darkening)
at the surface of a rapidly
rotating stellar model of
5M�. The solid line
represents the full
two-dimensional model, the
dashed line the simplest
model described in text and in
[16], while the dotted line
shows the prediction of von
Zeipel hypothesis

Table 3.1 Fundamental parameters for a series of rotating stellar modelsa

M (M�) Ω/ΩK b R (R�) εc P s
rot (d) P c

rot (d) veq (km/s) L (L�) Teff (103 K) logge

3.0 0.0 1.97 0.00 – – 0.0 81.2 12.36 4.33

3.0 0.3 1.96(p)
2.05(e)

0.04 0.70(p)
0.65(e)

0.54 158.6 80.0 12.50(p)
11.97(e)

4.33(p)
4.25(e)

3.0 0.5 1.95(p)
2.19(e)

0.11 0.46(p)
0.43(e)

0.36 255.5 78.4 12.69(p)
11.31(e)

4.34(p)
4.11(e)

3.0 0.7 1.94(p)
2.42(e)

0.20 0.38(p)
0.36(e)

0.30 340.4 77.0 12.84(p)
10.36(e)

4.34(p)
3.86(e)

3.0 0.9 1.93(p)
2.74(e)

0.29 0.35(p)
0.34(e)

0.28 411.5 76.4 12.92(p)
8.91(e)

4.34(p)
3.32(e)

5.0 0.0 2.62 0.00 – – 0.0 542.8 17.23 4.30

5.0 0.3 2.60(p)
2.72(e)

0.04 0.83(p)
0.77(e)

0.66 177.7 533.2 17.44(p)
16.69(e)

4.31(p)
4.23(e)

5.0 0.5 2.58(p)
2.91(e)

0.11 0.55(p)
0.51(e)

0.44 286.5 520.9 17.70(p)
15.76(e)

4.31(p)
4.09(e)

5.0 0.7 2.57(p)
3.21(e)

0.20 0.45(p)
0.42(e)

0.36 381.9 510.4 17.92(p)
14.43(e)

4.32(p)
3.83(e)

5.0 0.9 2.56(p)
3.63(e)

0.30 0.42(p)
0.40(e)

0.33 461.6 505.3 18.02(p)
12.40(e)

4.32(p)
3.30(e)

10.0 0.0 3.87 0.00 – – 0.0 5733.6 25.55 4.26

10.0 0.3 3.84(p)
4.02(e)

0.04 1.07(p)
0.98(e)

0.86 206.8 5619.0 25.85(p)
24.73(e)

4.27(p)
4.19(e)

10.0 0.5 3.81(p)
4.29(e)

0.11 0.70(p)
0.65(e)

0.57 333.6 5469.6 26.24(p)
23.35(e)

4.27(p)
4.05(e)
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Table 3.1 (Continued)

M (M�) Ω/ΩK b R (R�) εc P s
rot (d) P c

rot (d) veq (km/s) L (L�) Teff (103 K) logge

10.0 0.7 3.78(p)
4.73(e)

0.20 0.57(p)
0.54(e)

0.46 444.8 5341.5 26.57(p)
21.35(e)

4.28(p)
3.80(e)

10.0 0.9 3.76(p)
5.37(e)

0.30 0.53(p)
0.51(e)

0.43 536.7 5279.3 26.73(p)
18.28(e)

4.28(p)
3.26(e)

20.0 0.0 5.70 0.00 – – 0.0 43791.2 35.00 4.23

20.0 0.3 5.66(p)
5.91(e)

0.04 1.36(p)
1.24(e)

1.13 241.0 42921.1 35.41(p)
33.89(e)

4.23(p)
4.16(e)

20.0 0.5 5.61(p)
6.32(e)

0.11 0.89(p)
0.82(e)

0.74 388.5 41775.4 35.94(p)
31.97(e)

4.24(p)
4.01(e)

20.0 0.7 5.57(p)
7.00(e)

0.20 0.72(p)
0.68(e)

0.61 516.9 40790.9 36.39(p)
29.16(e)

4.24(p)
3.76(e)

20.0 0.9 5.54(p)
8.02(e)

0.31 0.67(p)
0.65(e)

0.56 621.0 40326.9 36.60(p)
24.82(e)

4.25(p)
3.22(e)

aFrom left to right: Mass, equatorial angular velocity, radius, flattening, central rotation period,
surface rotation period, equatorial velocity, luminosity, effective temperature, logarithm of effective
gravity (cgs). The values for the solar parameters used in the table are M� = 1.9891 × 1033 g,
R� = 6.95508× 1010 cm and L� = 3.8396× 1033 erg/s
bΩK =

√

GM/R3
e

cFlattening ε = 1− Rp
Re

using Lmax = 64 and 400 radial points distributed over eight domains. The virial and
energy tests give an idea of the quality of the solutions. As we can see, the virial test
values are very small, below a few 10−10, as a result of the high precision of spectral
methods. The energy test is also good enough (under around 10−5), the larger values
being a consequence of the use of tabulated opacities which have limited precision.

3.5 Conclusions

The computation of two-dimensional stellar models is a real numerical challenge
that has been taken up by the ESTER project. The key difficulty is to derive simul-
taneously the bulk structure of the star and the mean velocity fields that pervade
it. These large-scale flows come from either the baroclinicity of the radiative zones
or from the anisotropic Reynolds stresses in the convective zones (although some
Reynolds stresses might also be expected in the radiative zones if shear instabilities
can generate some small-scale turbulence as suggested by [43]). At the moment,
the ESTER code can produce dynamically self-consistent models, which include
the background flows but no Reynolds stresses, for stars with masses larger than
1.5M� and rotation rates less than 90 % the break-up. The possibilities of the code
have not yet been fully explored however.
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As far as steady solutions are concerned, the main challenges are to enable the
modelling of the lower-mass stars (solar type) with an outer convection zone and to
take into account the effects of viscosity and Reynolds stresses in the bulk of the
stars. These latter effects might indeed be crucial to the transport of elements.

The next important step will be to deal with time evolution. This should include:

• Dynamical evolution during PMS phase with a slow gravitational contraction in-
ducing spin-up of the star;
• Dynamical evolution during main sequence with stellar wind, which forces a spin

down and associated mixing;
• Nuclear evolution.

These steps need the right algorithm for temporal evolution, which is not known
presently. Indeed, such an algorithm should be at the same time fast, stable and pre-
cise. We have managed to use spectral methods, which ensure rapidity and precision,
but the stability remains a challenge. A better understanding of the properties of the
discretized operators is certainly a key to improve the efficiency of the algorithms.

As shown by the foregoing examples, some realistic models can now be com-
puted for intermediate mass and massive stars. These models are steady, and there-
fore the chemical composition must be given. To circumvent this constraint, one-
dimensional models can be used to compute time evolution and the ensuing chem-
ical composition. Then, the bulk relation between pressure and chemical composi-
tion shown by the 1D model can be inserted into the 2D model. In this way, steady
models can include some stellar evolution.

The steady models described in this work are most relevant in the study of the
oscillation properties of rotating stars. The interpretation of the frequency spectrum
of such stars is indeed a challenging problem, and an intense use of 2D models will
be necessary to find out how to invert data coming from, for instance, δ-Scuti stars.

Another use of these models is obviously the interpretation of interferometric
data collected on some nearby fast rotating stars (α Aql, α Cep, α Leo, β Cas,
etc.). Fast rotating stars have a surface brightness that strongly depends on latitude
(gravity darkening). Accurate models are crucial to extract the physical parameters
contained in the interferometric data from such stars.

Finally, steady two-dimensional models may also serve as proxies for the initial
conditions of a collapsing massive star, although the final word will come from
time-evolved models including mass-loss.
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Chapter 4
The Influence of Initial Conditions on Stellar
Rotation History

J.P. Marques and M.J. Goupil

Abstract The question of whether the effects of different initial states persist during
the main sequence is important, since it could shed light on the pre-main sequence
phase.

In this work we discuss the effects of different initial states on the rotation pro-
file during the main-sequence. We consider both solar-type stars and higher-mass
stars. Solar-type stars are fully convective when they start their pre-main sequence
evolution. They are braked by magnetic winds during the main sequence, and the
effects of the initial conditions is soon forgotten. Lithium abundance, however, is a
proxy for the rotation velocity at the ZAMS; it remains different for different initial
conditions throughout the main sequence.

Higher-mass stars are not braked by winds, and they do not start their pre-main
sequence evolution fully convective. Therefore, the question as to their initial rota-
tion profiles may well be asked. We show that different initial rotation profiles lead
to different profiles well into the main sequence. If we want to describe accurately
stellar internal rotation, initial conditions need to be carefully considered.

4.1 Introduction

Internal transport of angular momentum remains an open problem in stellar physics.
Several processes have been suggested: diffusion by turbulent viscosity, transport
by meridional circulation [12, 35], torques due to magnetic fields [11, 14, 30] and
transport by gravity waves [31]. An additional problem is magnetic braking by stel-
lar winds [8], which is present in stars with significant convective envelopes. Addi-
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tionally, the interaction between the star and the environment during the pre-main
sequence (PMS) is essential in establishing initial conditions for the evolution of the
internal rotation profile.

The effect of the initial conditions on the history of surface rotation velocities is
well documented (see [3, 10] and references therein). Here we discuss the impor-
tance of the initial conditions on the internal rotation profile and surface chemical
abundances. Our main goal is to see how far the imprint of the initial conditions
persist and whether one should be more careful in considering them.

4.2 Transport of Angular Momentum

In convective zones, although there is differential rotation in latitude, the mean ro-
tation rate at a given radius depends weakly on the radius. Therefore, it is often
assumed in 1D stellar evolution codes that convective zones rotate as solid bodies
[18, 20, 33].

In a radiative zone, we used the formalism of [35], refined in [12], to model the
transport of angular momentum and chemical species by meridional circulation and
shear-induced turbulence.

Turbulence is expected to be highly anisotropic due to the stable stratification in
radiative zones; turbulence would then be much stronger in the horizontal than in
the vertical direction. Thus, the hypothesis of “shellular rotation” can be used: as
differential rotation is presumably weak along isobars, it is treated as a perturbation.
All variables f can be split into a mean value over an isobar and a perturbation (as
in [35]):

f (p,ϑ)= f̄ (p)+ f̃2(p)P2(cosϑ), (4.1)

where P2(cosϑ) is the second-order Legendre polynomial, and p is the pressure.
The velocity of meridional circulation can be written in a spherical coordinate

system as

U=U2(r)P2(cosϑ)er + V2(r)
dP2(cosϑ)

dϑ
eϑ , (4.2)

where r is the mean radius of the isobar, and ϑ the colatitude. A positive U2 cor-
responds to a circulation that rises at the poles and descends at the equator. The
horizontal component V2 can be obtained from U2 using the equation of continuity
in the anelastic approximation,

V2 = 1

6ρr

d

dr

(

ρr2U2
)

, (4.3)

where ρ is the density.
The transport of angular momentum obeys an advection–diffusion equation

ρ
d

dt

(

r2Ω
)= 1

5r2

∂

∂r

(

ρr4ΩU2
)+ 1

r2

∂

∂r

(

r4ρνV
∂Ω

∂r

)

, (4.4)
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where νV is the vertical component of the turbulent viscosity, and d/dt represents
the Lagrangian time derivative. It is seen that a positive U2 transports angular mo-
mentum inwards.

In a star in “shellular” rotation, isobaric and isopycnical (constant density) sur-
faces do not coincide (unless Ω(r) is constant, i.e., we have solid-body rotation).
Thus, density varies along an isobar. The variation is given by the amount of differ-
ential rotation

Θ = ρ̃
ρ
= 2r2

3g
Ω
∂Ω

∂r
. (4.5)

In a region with a gradient of the mean molecular weight μ, meridional circu-
lation will tend to create a variation of μ along an isobar. The strong horizontal
turbulence tends to homogenize it in the horizontal direction, and thus the relative
horizontal variation of the mean molecular weight, Λ= μ̃/μ, results from the com-
petition between these two effects:

dΛ

dt
=U2

∇μ
HP
− 6Dh

r2
Λ, (4.6)

where Dh is the horizontal component of turbulent diffusion discussed below.
Finally, the vertical component of the meridional circulation is given by

U2 = p

cpρT g[∇ad −∇ + (ϕ/δ)∇μ]
[
Lr

M�
(EΩ +Eμ)+ cpT

δ

dΘ

dt

]

, (4.7)

where cp,T , g,∇ and ∇ad have their usual meaning (as defined in [9]). In Eq. (4.7)
above,M� is the reduced mass,

M� =m
(

1− Ω2

2πGρm

)

, (4.8)

where m and ρm are the mass and mean density inside an isobar, respectively. EΩ
and Eμ denote the so-called Ω- and μ-currents; explicit expressions are given in,
e.g., [20]. The quantities ϕ and δ are obtained from the equation of state; they are
defined as in [9]:

δ =−
(
∂ lnρ

∂ lnT

)

P,μ

; ϕ =
(
∂ lnρ

∂ lnμ

)

P,T

. (4.9)

The Ω-current contains Ω(r) and its derivatives. It is generally the driving term
for the meridional circulation, whereas the μ-currents (containing μ and its deriva-
tives) will generally oppose it.

Figure 4.1 shows an example of a U2 profile (left panel) and corresponding 2D
circulation (right panel). SinceU2 is negative everywhere in this example, the merid-
ional circulation rises at the equator and sinks at the poles. There is one cell rotating
counterclockwise in the quadrant shown. Figure 4.1 also shows, in the right panel,
the temperature perturbation �T/T . It is seen that, at a given radius, the pole is
hotter than the equator.



78 J.P. Marques and M.J. Goupil

Fig. 4.1 Left panel: profile of the vertical component of the meridional circulation U2(r) as a
function of normalized radius (r/R�) for 1.5M� stellar model at the middle of the main sequence.
The rotation velocity at the equator is 70 km s−1 at the surface. Right panel: the corresponding 2D
circulation pattern in a meridional plane and the temperature perturbation

4.2.1 Evolution of the Chemical Composition

The vertical advection of chemicals due to the large-scale meridional circulation
coupled with a strong horizontal turbulent diffusion results in a vertical diffusion
process (e.g., [4]). The equation of the chemical composition evolution can then be
written as

dXi
dt
= ∂

∂m

[
(

4πr2ρ
)2
(DV +Deff)

∂Xi

∂m

]

+ dXi
dt

∣
∣
∣
∣
nucl
+ dXi

dt

∣
∣
∣
∣
micro

, (4.10)

whereXi is the abundance by mass of the ith nuclear species, andDV = νV andDeff
are the vertical diffusivity and the diffusion coefficient associated with the merid-
ional circulation.

A necessary condition for shear instability is the Richardson criterion as given
by [32]. For the instability to grow, the turbulent viscosity νV must be greater than
the molecular viscosity, ν, as expressed by the Reynolds criterion

νV > νRec, (4.11)

where Rec � 10 is the critical Reynolds number [26]. When condition (4.11) is not
satisfied, we use DV = νV = ν.

4.2.2 Turbulent Coefficients of Diffusivity

The coefficient Deff is given by [4]

Deff = (rU2)
2

30Dh
. (4.12)
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We use the prescription of [15] for the horizontal component of turbulent diffu-
sivity Dh:

D2
h =

β

10
r3Ω|2V2 − αU2|, (4.13)

where

α = 1

2

∂ ln r2Ω

∂ ln r
. (4.14)

We take the coefficient β = 1.5× 10−5 [23].
For the vertical component DV, we use the prescription of [32]:

DV = Ric(K +Dh)r
2

N2
T +N2

μ(1+K/Dh)

(
∂Ω

∂r

)2

, (4.15)

where Ric = 1/6 is the critical Richardson number, K the thermal diffusivity, NT
and Nμ the chemical and thermal parts of the Brunt–Väisälä frequency, N2 =N2

T +
N2
μ:

N2
T =

gδ

HP
(∇ad −∇); N2

μ =
gϕ

HP
∇μ. (4.16)

Other prescriptions have been used, and the problem of computing the diffusion
coefficients is far from closed. A discussion is presented in Meynet et al., Chap. 1
of this volume.

4.3 Magnetic Braking

Stars less massive than 1.2 to 1.4M� have significant outer convective zones.
A solar-type dynamo operates in this zone and generates a magnetic field. The cou-
pling between the magnetic field and the plasma in the stellar wind strongly brakes
the rotation of the star. The reason is that the wind is forced by the magnetic field to
corotate with the surface of the star up to the Alfvén radius rA (e.g., [17, 24]). Thus,
the specific angular momentum carried by the wind isΩsurfacer

2
A and notΩsurfaceR

2
� ,

as it would be if there were no magnetic fields. For the Sun, rA � 10R�, and the
angular momentum lost by the Sun is 102 times larger with a magnetic field.

Following ([8], hereafter K88), the loss of angular momentum for a star of radius
R and surface angular velocity Ω is

J̇ =
{ 2

3ṀR
2Ω(rA

R
)2 for a radial field,

2
3ṀR

2Ω(rA
R
) for a dipole,

(4.17)
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where Ṁ is the mass loss rate. The wind speed vwind is proportional to the local
escape velocity:

vwind =Kwind

√

2GM

r
, (4.18)

where r is the distance to the center of the star. At r = rA, the Alfvén velocity vA is
equal to the wind velocity, and so,

vA = BA√
4πρ
=Kwind

√

2GM

rA
, (4.19)

where BA is the magnetic field at rA. From mass conservation,

Ṁ = 4πρr2
Avwind, (4.20)

and the conservation of magnetic flux gives

B0R
2 = BAr

2
A for a radial field,

B0R
3 = BAr

3
A for a dipole,

(4.21)

where B0 is the magnetic field at the stellar surface. K88 assumed that the magnetic
flux at the stellar surface scales with some power of the angular velocity,

B0 =KB
Ωa

R2
, (4.22)

where a is expected, from theoretical considerations, to lie between 1 and 2. Thus,
Eq. (4.17) becomes

J̇ =KWΩ
1+4an/3R2−nṀ1−2n/3M−n/3, (4.23)

where KW contains the constants Kwind and KB , M is the stellar mass, and n = 2
for a radial field, while n = 3/7 for a dipole. K88 chose n = 1.5, a value between
both cases. With this choice, J̇ is independent of the mass loss rate.

Measurements of magnetic fields in solar-type stars [25] seem to indicate a linear
relation between B0 and Ω up to values of around 10Ω�, the value at which the
magnetic field saturates. Thus, the exponent a in Eq. (4.22) is a = 1 for Ω <Ωsat
and a = 0 for Ω >Ωsat. Thus, Eq. (4.23) becomes

J̇ =
⎧

⎨

⎩

−KWΩ
3( R
R� )

1
2 ( M
M� )

− 1
2 for Ω <Ωsat,

−KWΩΩ
2
sat(

R
R� )

1
2 ( M
M� )

− 1
2 for Ω ≥Ωsat.

(4.24)

Hereafter, we will call Eq. (4.24) the K88 magnetic braking law.
The value of Ωsat is often set at 8–14Ω� (as in [3]). There are indications that

Ωsat varies with stellar mass (e.g., [1, 10]).
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The parameter KW in Eq. (4.24) is usually calibrated by requiring that solar
models have Ω =Ω� = 2.86× 10−6 rad s−1. The precise value of KW needed to
spin down the Sun to its current period depends on the prescription for the transport
of angular momentum adopted (see below). The parameter KW should depend on
stellar mass (e.g., [10]).

Recently, [22] (hereafter RM12) have criticized the approach used in K88.
Specifically, K88 assumed that the magnetic flux at the stellar surface scales with
some power of the angular velocity, Eq. (4.22), whereas RM12 remarked instead
that it is the magnetic field that should obey such a law, and thus, B0 ∝Ωa . RM12
used a = 1.5 as a reasonable choice between the values expected from theory and
consistent with [25]. RM12 used a radial field consideration to obtain

J̇ =
⎧

⎨

⎩

−KRMΩ
5( R
R� )

8
3 ( M
M� )

− 2
3 for Ω <Ωsat,

−KRMΩΩ
4
sat(

R
R� )

8
3 ( M
M� )

− 2
3 for Ω ≥Ωsat.

(4.25)

We shall refer to Eq. (4.25) as the RM12 magnetic braking law. The value of KRM

does not depend on the stellar mass, and Ωsat � 3Ω� to reproduce rotation rates in
young clusters.

4.4 Initial Conditions

Stars are fully convective as they start their pre-main sequence evolution on the
Hayashi track. Assuming that convective zones rotate like solid bodies, the star
should have a uniform angular velocity at the beginning of its evolution.

However, this is not a realistic assumption, since stars are not formed by the ho-
mologous contraction of the parental cloud. Instead, a hydrostatic core forms first,
onto which matter accretes from the parental cloud during the main accretion phase.
Once stellar winds dissipate the cloud, or the cloud is exhausted, the main accretion
phase is over, and the star appears optically visible for the first time. Accretion
may continue from a residual disk, but the mass of the star does not change signif-
icantly thereafter. The track of an accreting protostar in the HR diagram is called
the birthline (after [29]). Initial conditions including the birthline are modeled in
the following way: a protostar with a very small mass (0.1M�) starts accreting at a
given rate, following the birthline in the HR diagram until it reaches its final mass.
Then, accretion stops, and the usual pre-main sequence (PMS) evolution follows
from that point. The main parameters of the birthline are the mass accretion rate Ṁ
and initial deuterium abundance.

Figure 4.2 shows the evolution on the HR diagram of an accreting protostar,
calculated with Ṁ = 10−5M� yr−1 and Ṁ = 2× 10−6M� yr−1. For comparison,
PMS tracks are also shown. It is clear, as shown for the first time by [21], that
stars more massive than about 7M� (for Ṁ = 10−5M� yr−1; 5M� for Ṁ = 2 ×
10−6M� yr−1) do not have a PMS phase; they appear already at the ZAMS. Stars
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Fig. 4.2 Birthlines computed with two different accretion rates, Ṁ = 10−5M� yr−1 and
Ṁ = 2 × 10−6M� yr−1. Solid lines indicate birthlines computed with a mixing-length parame-
ter α = 1.6, dashed lines indicate birthlines computed with a mixing-length parameter α = 1.3.
Dotted lines are classical PMS tracks, with masses labeled

more massive than 2M� are no longer fully convective as they appear on the PMS.
For these stars, a fully convective initial model is not a realistic assumption.

If, during the PMS, the only process slowing down stellar rotation were to be the
magnetic braking by stellar winds mentioned above, stars would rotate much more
rapidly than observed on the ZAMS. The PMS is too short for magnetic braking to
slow down the star significantly. An additional process is needed during the PMS,
most likely disk locking [3, 27].

Young stars are most often surrounded by a circumstellar disk left behind after
the main accretion phase is over. The magnetic coupling between the star and the
disk slows down the star (e.g., [27]); this effect is often modeled by assuming that
the stellar surface co-rotates with the disk at a constant angular velocity [3] as long
as the disk exists. Once the disk has disappeared, the star surface rotation evolves
freely. The parameters of the model are the disk lifetime τdisk and rotation period
Pdisk. The disk lifetime is expected to lie between 5 and 10 Myrs, while the rotation
period is 1–10 days.

4.5 Solar-Type Stars

Solar-type stars appear fully convective on the PMS. Thus, an initial condition of
uniform angular velocity is appropriate. As explained above, such stars are often
surrounded by a circumstellar disk, and disk locking takes place. The parameters for
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Fig. 4.3 Evolution of the
surface angular velocity for
1M� models with different
initial conditions (see text).
Loss of angular momentum
was computed according to
K88. Solid lines represent
models including internal
transport of angular
momentum in radiative zones
(solid-body rotation in
convection zones), dashed
lines represent models
computed with solid-body
rotation. The ZAMS is at an
age of 50 Myrs

disk locking should not be the same for all stars. Indeed, the duration and Keplerian
period for the disk depends on the environment in the star-forming region.

4.5.1 Evolution of the Rotation Rate

We have created a series of evolutionary models with M = 1M� using the code
CESTAM [13]. Models were calculated using the framework for internal transport
of angular momentum sketched above. We have also computed evolutionary mod-
els using solid-body rotation for comparison. Microscopic diffusion and settling
were included according to the prescription of [19]; models calculated with transport
of angular momentum also included rotation-induced mixing. The initial chemical
composition and MLT parameter α were those of a solar model calibrated using the
same physics and the solar mixture of [2]. The initial conditions for the evolution of
the rotation profile were:

• τdisk = 5 Myrs and τdisk = 10 Myrs;
• Pdisk = 2.5 days (fast initial rotation) and Pdisk = 8 days (slow initial rotation).

Thus, we hoped to cover a reasonable range of conditions typical of observed disks
around PMS stars.

Figure 4.3 shows the evolution of the surface rotation rate for models computed
with the K88 magnetic braking law, computed with internal transport of angular
momentum and using solid-body rotation. The constant KW in Eq. (4.24) was cali-
brated to obtain the solar rotation rate at the solar age. For the models with internal
transport of angular momentum,KW = 6.5× 1047 g cm2 s2; for solid-body rotation,
KW = 4.9× 1047 g cm2 s2. The saturation rotation rate was set at Ωsat = 8Ω�.

Disk locking is seen during the first 5 or 10 Myrs, depending on τdisk. After an
age τdisk, the star is free to spin up as it contracts along the PMS. Magnetic brak-
ing by stellar winds is not efficient enough to slow down the star at this stage, but
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Fig. 4.4 Evolution of the
surface angular velocity for
1M� models with different
initial conditions (see text).
Loss of angular momentum
was computed according to
K88. Solid lines represent
models calculated with
Ωsat = 8Ω�, dashed lines
represent models computed
Ωsat = 4Ω�

it begins to slow down the star after the ZAMS. There are two regimes, depend-
ing on whether Ω >Ωsat (saturated regime) or Ω <Ωsat (unsaturated regime). For
models computed with transport of angular momentum, we are always in the unsat-
urated regime for models with slow initial rotation. Models with fast initial rotation
are in the saturated regime in the beginning, but as they slow down, they eventually
enter the unsaturated regime. When Ω gets below Ωsat, the rotation rate obeys the
so-called Skumanich law [28], Ω ∝ t−1/2. After about 1 Gyrs, all rotation histories
converge to the same curve, a straight line in Fig. 4.3 corresponding to the Sku-
manich law (notice that Fig. 4.3 is a log–log plot). The internal Ω-profile does not
depend on the initial conditions after the convergence of the rotation histories.

Models computed with solid-body rotation show faster rotation around the
ZAMS. This is because magnetic winds must brake the whole star; in the case of
transport of angular momentum, only the outer convection zone is initially braked,
as it is weakly coupled to the radiative interior. Afterwards, angular momentum is
transported from the faster rotating core, and the braking of the convection zone
is slowed. Thus, the range of rotation periods in young clusters can constrain the
efficiency of the transport of angular momentum (e.g., [6]).

Figure 4.4 shows the effect of changing the saturation angular velocity. All mod-
els shown were computed with transport of angular momentum. It is seen that a
lower saturation threshold mimics a more efficient internal transport of angular
momentum (compare with Fig. 4.3). This is because the braking is less efficient,
therefore stars reach higher velocities at the ZAMS. Stars stay longer in the satura-
tion regime, and thus the convergence of rotation histories occurs later, as seen in
Fig. 4.4.

Finally, Fig. 4.5 shows a comparison between models computed with the brak-
ing laws of K88 and RM12. Models calculated with RM12 used KRM = 4.25 ×
1038 g cm2 s4 in order to reproduce the solar rotation rate at the solar age. Two things
are noticeable: first, because RM12 used Ωsat = 3Ω�, stars stay in the saturated
regime much longer; second, the unsaturated regime does not seem to follow the
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Fig. 4.5 Evolution of the
surface angular velocity for
1M� models with different
initial conditions (see text).
Loss of angular momentum
was computed according to
K88 (solid lines) and RM12
(dashed lines)

Skumanich law! Indeed, we expect Ω ∝ t−1/4, since J̇ ∝Ω5 (compared to K88’s
J̇ ∝Ω3). RM12 have argued that their model reproduces on average the Skumanich
law; first, models rotate faster than predicted by Skumanich law, then slower (see
Fig. 4.5). However, RM12 have a strong dependence on radius; as a star evolves on
the main sequence, its radius increases, and so, as seen in Fig. 4.5, the rotation rates
of RM12 and K88 converge. In short, models computed with RM12 rotate more
slowly than models computed with K88 before the middle of the MS. When they
reach the solar age, however, their internal Ω-profiles are indistinguishable. Once
again, the memory of the initial conditions is lost.

4.5.2 Evolution of the Surface Lithium Abundance

Lithium-7 is a fragile element, burned by proton capture at T � 2.5× 106 K. This
temperature corresponds to a region not too far below the convection zone in the
Sun. This means that the 7Li abundance in the outer convection zone is essentially
equal to the initial abundance (a small fraction is burned during the PMS). The fact
that A(Li) = 12 + logN(Li)/N(H) = 1.1 in the solar convection zone, while the
initial A(Li)= 3.26, means that there is some process transporting lithium in the ra-
diative zone. Microscopic diffusion and settling are not efficient enough to account
for the deficit. Efficient convective overshoot below the convective zone could ex-
plain the discrepancy, but lithium depletion would, in this case, have happened in
the PMS. Reference [16] show, however, that during the MS the lithium abundance
decreases with age for solar twins. This is compatible with a diffusive process, such
as rotation-induced mixing.

Figure 4.6 shows the evolution of the surface lithium abundances for the models
shown in Fig. 4.3 (with transport of angular momentum). The evolution is of the kind
shown in [16], but our models deplete lithium too much. This is compatible to what
is known about the solar rotation profile in the radiative zone. Our models predict a
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Fig. 4.6 Evolution of the
surface lithium abundance for
1M� models with different
initial conditions (see text)

rotation profile that increases toward the center, while results from helioseismology
show a flat rotation profile (e.g., [34] and references therein). Hence, there should
be less shear, and so less efficient lithium depletion.

Figure 4.6 shows that the amount of lithium depletion depends strongly on the
initial conditions. Before rotation histories converge, stars with higher initial rota-
tion rates deplete lithium more efficiently. This can be clearly see in Fig. 4.6: the
difference in lithium abundances is established before the convergence age. Thus,
lithium abundance is a probe of the initial conditions, even if the rotation profile
forgets them. Reference [5] have used internal gravity waves to obtain a flat so-
lar rotation profile. Their models reproduce the observed lithium abundances, and
they indicate a dependence of lithium abundance on the initial conditions. However,
other solutions to the solar rotation problem have been proposed, such as magnetic
fields [11, 14, 30].

4.6 Intermediate Mass Stars

Intermediate mass stars, in the context of PMS evolution, are stars that appear on
the PMS with a radiative core. They have 1.8M� <M < 8M�. The initial condi-
tions for the evolution of the rotation profile are particularly difficult, since they do
not experience magnetic braking (they have thin outer convection zones) and so the
memory of the initial conditions is likely preserved. Different initial rotation veloc-
ities persist for the rest of the life of the star, since there is conservation of angular
momentum. Another issue concerns the initial rotation profile. Since the initial PMS
model is not fully convective, there is no reason to enforce solid-body rotation there.
The question of the initial rotation profile could be important.

Models are often evolved from a state in solid-body rotation at the ZAMS (e.g.,
[7]). We know, however, that after evolving on the PMS and before, models should
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Fig. 4.7 Evolution of the
rotation velocity for 5M�
models with different initial
conditions (see text). Solid
lines represent models PMS,
dashed lines represent models
BL, and dotted lines represent
models ZAMS. The left panel
shows models that have the
same surface velocity at
Xc = 0.7, the middle panel
models that have the same
surface velocity at Xc = 0.6,
and the right panel models
that have the same surface
velocity at Xc = 0.35

not be in solid-body rotation at the ZAMS. To gauge the impact of introducing solid-
body rotation at different stages, we computed 5M� evolutions starting from models
in solid-body rotation at the Hayashi track (model PMS), the birthline (model BL,
see Fig. 4.2), and the ZAMS (model ZAMS). It is not realistic to enforce solid-body
rotation at the birthline or ZAMS, of course.

Models have Xi = 0.73 and Zi = 0.01, and no magnetic braking was included.
Model PMS had an initial rotation velocity chosen in order to have veq = 50 km s−1

at the ZAMS. The others had initial rotation velocities chosen in order to have the
same velocity as model PMS at three different stages: when Xc = 0.7, Xc = 0.6,
and Xc = 0.35. At these points, we compared the internal profiles.

Figure 4.7 shows the evolution of the rotation velocity for the models considered.
It is clear that models PMS have a different evolution. The reason is that they arrive
at the ZAMS with a relatively strong differential rotation, with the core rotating
faster than the envelope. Thus, angular momentum is transported from the core to
the envelope, where it compensates the slowing down caused by its slow expansion.

This can be seen in Fig. 4.8, showing the internal Ω-profiles corresponding to
Fig. 4.7 when models have the same velocity. At Xc = 0.7, models BL have an
envelope rotating faster than the core. This is because solid-body rotation was in-
troduced at the birthline, before the convective core appears near the ZAMS. When
a convective core appears due to the beginning of the nuclear reactions, it expands,
leading to a decrease of the angular velocity in the core. Thus, BL models arrive
at the ZAMS with an envelope rotating faster than the core. Models ZAMS, on the
other hand, do not have time to change their structure significantly, thus rotating
close to their initial condition: as solid bodies. Models PMS arrive at Xc = 0.7 with
a relatively high differential rotation.

During the first half of the main sequence, models BL and ZAMS have accel-
erating cores, while models PMS have cores that slow down. The Ω-profile of the
three cases converge after Xc = 0.3. Therefore, the imprint of the initial conditions
is visible in the rotation profile for a large part of the main sequence.
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Fig. 4.8 Profile of Ω for
5M� models with different
initial conditions (see text).
Solid lines represent models
PMS, dashed lines represent
models BL and dotted lines
represent models ZAMS. The
left panel shows models that
have the same surface
velocity at Xc = 0.7, the
middle panel models that
have the same surface
velocity at Xc = 0.6, and the
right panel models that have
the same surface velocity at
Xc = 0.35

4.7 Conclusions

We have presented a study of the impact of the initial conditions on the stellar ro-
tation profile. We have considered stars which are braked by magnetic winds and
those which are not. Stars that are braked lose the memory of the initial conditions
relatively early on the MS. Both the surface rotation rates and the internal profile
are the same afterwards, irrespective of the initial state.

On the other hand, stars that are not braked retain signatures of the initial con-
ditions. Their rotation rate depends on their initial rotation velocity, since there is
conservation of angular momentum. But their internal profiles also bear the mark of
their history during the PMS and star formations.

It is known that meridional circulation and turbulent viscosity alone do not ac-
count for all the observed features of rotation in solar-type stars. Investigation of
other mechanisms of transport of angular momentum in stars remains an important
issue for future work.
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Chapter 5
Numerical Exploration of Oscillation Modes
in Rapidly Rotating Stars

Jérôme Ballot, François Lignières, and Daniel R. Reese

Abstract In this chapter, we show that two-dimensional oscillation codes help us
to improve our knowledge of the effects of rapid rotation on acoustic (p) and gravity
(g) modes. We first discuss how to solve the full problem of stellar oscillations in
rapidly rotating stars by including the effects of the Coriolis force as well as those of
the centrifugal distortion. We illustrate the development and the validation of a 2-D
code using the Two-dimensional Oscillation Program (TOP) as an example. We then
describe what strategies are being developed to explore the p- and g-mode spectra,
how effective these methods are, and what intrinsic difficulties they face. In the last
part of this chapter, we present results obtained with these techniques.

5.1 Introduction

Space-based missions CoRoT (Convection, Rotation, and planetary Transits) [2] and
Kepler [40] opened a new area for asteroseismology by providing unprecedented
long uninterrupted time series of high-precision photometric data over months or
years. Nowadays, one of the limitations which hinders us from fully exploiting
these data is the difficulty that we have in interpreting a number of the observed
oscillation spectra. Whereas the structure of solar-like oscillation spectra is well un-
derstood, this is generally not the case for classical pulsators, which often exhibit
more complex patterns. Stellar rotation is an identified source of complexity. Indeed,
rapid rotation is very common for main-sequence intermediate- and high-mass stars
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[72] and may have a strong impact on the spectra of acoustic (p) modes—e.g., in δ
Scuti and β Cephei stars—and gravity (g) modes—e.g., in γ Doradus and slowly
pulsating B-type (SPB) stars.

Rotation has various effects on stellar oscillations, resulting from the appearance
of the Coriolis and centrifugal forces. Whereas the former directly acts on the os-
cillatory motions, the latter distorts the star and modifies its structure. Thanks to
the recent improvements of interferometric facilities, strong distortions have been
measured in rapidly rotating stars. The Be star Achernar (α Eri) is probably the
most famous and striking example [27]. Computing internal structures of distorted
stars is the first challenge. In recent years, increasingly realistic models have been
developed [21–23, 31, 37, 38, 53, 68, 70, 71], and a new generation of stellar mod-
els is now appearing (for a review, see Rieutord and Espinosa Lara, Chap. 3 of this
volume). For a long time, the only way to obtain fully and consistently deformed
stars was to consider polytropic models. If one was interested in realistic models,
then one would have to consider a 1-D stellar model, obtained through classical
evolution codes, which may include some effects of rotation on the structure (see
the monograph [54] for more details) and deform it by considering the centrifugal
distortion as a 2nd-order perturbation in Ω , as is done, for example, in [9, 43].

Rotation breaks the spherical symmetry of the oscillation problem by introducing
a preferential axis. As a consequence, and in contrast to the nonrotating case, the
oscillation problem is no longer separable with respect to the variables r (radius)
and θ (colatitude). We then end up with a 2-D eigenvalue problem to solve. Several
methods have been proposed to solve this problem. Approximate methods, such as
the perturbative approach and the traditional approximation, have been devised, as
well as solvers of the full problem (see, e.g., the review [61]).

A typical approach used in treating the effects of rotation on oscillation modes is
to consider them as perturbation. One then transforms a 2-D problem into a sequence
of 1-D problems, which is much simpler to solve. Methods which take into account
the first-order effects of rotation were developed in [20, 41], second-order correc-
tions were proposed by [12, 29, 35, 74, 79–81, 83], and even third-order terms were
introduced by [39, 82]. Perturbative methods are valid as long as the rotation is slow
enough. More precisely, the rotation rate, Ω , must satisfy the following conditions:
Ω � ω and Ω �ΩK, where ω is the pulsation frequency, while ΩK =

√

GM/R3

is the Keplerian break-up rotation rate, with G,M , R the gravitational constant, the
mass and radius of the star, respectively. The first condition ensures that the effects
of the Coriolis force are small, whereas the second ensures the centrifugal distortion
is weak. Nevertheless, in practice we do not know a priori what constitutes a slow
rotation. Only a comparison with complete 2-D computations allows us to quantify
the condition on Ω (see Sect. 5.4.1).

For g modes, which have long periods, the assumption Ω � ω is often not ful-
filled. Another approach has been developed for this case. The traditional approxi-
mation, developed and commonly used in geophysics [30], consists in neglecting the
tangential component of the rotation vector in the momentum equation, in assuming
a spherical symmetry (i.e., neglecting the centrifugal distortion), and in neglecting
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the perturbations of the gravitational potential (known as “the Cowling approxima-
tion” [19]). Within such approximations, the problem is again separable in r and θ .
In contrast to the nonrotating case, the horizontal dependency of modes is not de-
scribed with spherical harmonics but with Hough functions [91]. The traditional
approximation has been applied to compute g modes in various stars, for example,
in [5, 42, 44–46, 76, 87–89]. The validity of such an approximation can also be
tested with full numerical computations (see Sect. 5.4.3).

To be able to treat arbitrarily high rotation rates, the full 2-D problem must be
solved. Developing methods able to solve this problem with a reasonable accuracy
is highly challenging. In this chapter, we present and discuss solvers for this difficult
problem and their usage in asteroseismology. In Sect. 5.2, we present the relevant
equations and methods to solve them. We emphasize the difficulties encountered in
developing accurate numerical codes, before presenting the Two-dimensional Os-
cillation Program (TOP), developed by Reese et al. [63, 65]. We then describe in
Sect. 5.3 how these codes can be used to compute and explore stellar oscillation
spectra, and what strategies are introduced to find the modes of interest. In Sect. 5.4,
we present some results obtained with these codes: how we test the limits of approx-
imate methods, how the p- and g-mode spectra are modified by rapid rotation, what
are the new families of modes that appear.

5.2 The Construction of an Oscillation Code for Rotating Stars

To our knowledge, three different methods have been implemented to compute stel-
lar oscillation modes of rotating stars while fully taking into account the effects of
rotation:

• The first method consists in finding the numerical solution of the boundary-value
problem governing time-harmonic small amplitude perturbations.
• The second method considers the variational form of this boundary-value problem

which expresses the eigenfrequencies as extrema of a functional of the flow. In
[14], this equation is used to find the best solution assuming a truncated expansion
on a suitable set of basis functions.
• A third method that has been mostly applied to compact stars [32] consists in solv-

ing the full time-dependent equations and to excite modes, for example, through
initial perturbations. It is probably not efficient to determine the full eigenmode
spectrum, but it is a natural way of investigate the nonlinear evolution of the per-
turbations.

With the exception of Clement’s variational method [14], the direct resolution of
the eigenvalue problem is the method that is most often used in stellar seismology
[13, 25, 43, 50, 56, 63, 78]. In this section, we shall concentrate on it first by recalling
the governing equations, then by discussing the possible numerical methods, and
finally by illustrating, through the TOP code, the development and validation of a
2-D oscillation code.
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5.2.1 The Governing Equations

The equations governing the oscillation modes in a rotating star can be written in
different forms and with different levels of approximation [91]. For simplicity, we
only present the equations governing small amplitude adiabatic perturbations of a
uniformly rotating star:

∂tρ +∇ · (ρ0u)= 0, (5.1)

ρ0∂tu+ 2ρ0�∧ u=−∇P + ρg0 − ρ0∇ψ, (5.2)

∂tP + u ·∇P0 = c2
s (∂tρ + u ·∇ρ0), (5.3)

�ψ = 4πGρ, (5.4)

where the equilibrium stellar model is described by its pressure, P0, density, ρ0,
sound speed, cs , and effective gravity, g0 =−∇(ψ0 −Ω2w2/2), resulting from the
gravitational potential, ψ0, and the centrifugal potential that depends on the dis-
tance to the rotation axis, w. The perturbations are given by six dependent variables
u, ρ, P , ψ , corresponding to the perturbations of velocity, density, pressure, and
gravitational potential, respectively.

We then look for normal mode solutions proportional to exp(−iωt) and assume
axial symmetry with respect to the rotation axis, which allows us to separate the
dependence of the azimuthal coordinate, φ, with solutions proportional to exp(imφ).
As a result, the linear operators of the above equations only apply to the meridional
plane. Solutions are then sought in the form ρ =�{ρ̂(xM) exp(imφ − iωt)}, where
xM is a point of the meridional plane. After including the boundary conditions at
the star’s surface, the system to be solved corresponds to a 2-D eigenvalue problem.

5.2.2 Discussion on the Mathematical and Numerical Options

When constructing a 2-D oscillation code, choices have to be made concerning the
dependent variables, the coordinate system, the spatial discretization and the alge-
braic eigenvalue solver. The principal difficulty resides in the fact that we do not
know in advance how the accuracy and efficiency of the code will depend on these
choices. The series of papers by Clement [13–18], where he experimented with dif-
ferent methods, fully illustrates this difficulty. Typically, numerical problems mani-
fest themselves by the presence of (many) spurious modes and/or by a failure of the
solutions to converge as the numerical resolution grows. Below we briefly discuss
the different mathematical and numerical options for the construction of a code,
starting with the algebraic eigenvalue solver.

After discretization, the 2-D eigenvalue problem becomes an algebraic one and
can be written in the form

AF= λBF, (5.5)
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where A and B are (NVN1N2)× (NVN1N2) matrices that also include the bound-
ary conditions, NV is the number of dependent variables, and N1 and N2 denote
the numbers of discretization points (or basis functions for spectral methods) for the
two coordinates of the meridional plane. The efficiency and the accuracy of eigen-
value algorithms depend on the structure of these matrices. For our type of problem,
A and B contain many zeros and thus belong to the class of sparse matrices. The
way nonzero terms are distributed then depends on the specific problem considered
and on the discretization method. In some cases, the nonzero terms can be confined
around the main diagonal, thus forming a band matrix. There exist standard algo-
rithms to find the eigenvalue of large matrices, the possibility of parallelizing them
playing an important role in their final efficiency [73]. A difficulty that is not al-
ways acknowledged is that the determination of eigenvalues of a given matrix can
be sensitive to the round-off errors on the matrix components. The amplitude of the
resulting error depends on the structure of the matrix and more specifically on its
conditioning. In some cases, it can be high enough to justify quadruple precision
calculations [92].

The choice of the discretization method is crucial in many respects. Firstly, it is
known to have a direct impact on the number of spurious modes (e.g., [93]). In a
recent study dedicated to finite difference schemes, [62] proposes a method to mini-
mize this number through a suitable choice of the numerical grid. Secondly, the dis-
cretization method affects the code’s efficiency because it determines both the size
and the structure of the matrices A and B. Indeed, if a method requires fewer dis-
cretization points N1 and N2 to represent a mode with a given accuracy, the product
N1N2 and thus the matrix size can be lowered. This argument favors high-order dis-
cretization schemes and spectral methods in particular. However, such schemes tend
to lead to matrices with nonzero elements distributed throughout the entire matrix,
whereas finite difference schemes produce band matrices, which reduce the storage
requirements for the matrix. If the centrifugal deformation is neglected, a spherical
harmonic expansion in latitude also leads to a banded structure because the Coriolis
force only couples spherical harmonics of degree l and l ± 2 [25]. The presence of
near-discontinuities in evolved stellar interiors must also be taken into account when
choosing a method. Typically, these can lead to applying a multidomain approach
[56, 66].

Finally, the analytical form of the eigenvalue problem can also play an impor-
tant role in the performance of the oscillation code. This includes the choice of
dependent variables, coordinate system, and vector basis. Starting from the above
linearized equations, one may try to lower the number of dependent variables NV
to diminish the matrix size. If, however, the order of the derivatives increases in
the process, this is not necessarily a good idea because truncation errors generally
increase with the derivative order. A suitable choice of the dependent variables can
also be useful to ensure that the solution is smooth at the surface [63]. The question
of the coordinate system arises because of the centrifugal deformation. Indeed, if
one still uses spherical coordinates (r, θ,φ), the stellar surface no longer coincides
with a constant-coordinate surface. To avoid the approximate treatment of the sur-
face boundary conditions, one can use instead a surface-fitting coordinate system
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(ζ, θ,φ) where ζ is specified by a relation r = f (ζ, θ), ζ = 1 corresponding to the
star’s surface [7]. The main disadvantage of these nonorthogonal coordinate sys-
tems is that writing differential operators can be quite cumbersome. For vectorial
operators, this can be simplified by using the so-called natural basis associated with
the coordinate system [36]. This holds in particular for the vector Laplacian.

5.2.3 Development and Validation of the TOP Code

In this subsection, the different steps in the construction of a 2-D oscillation code
for rotating stars are described and illustrated in the case of the TOP code. While
already suggested by the mathematical and numerical complexity of the problem,
a step-by-step approach was actually imposed by the lack of accurate calculations
to validate the code. Six low-order, low-degree modes computed by Clement [14]
have been used for comparison, but the limited accuracy of these calculations did
not allow more than a qualitative agreement [63].

The initial choices in building the TOP code were a surface-fitting coordinate
system (ζ, θ,φ), a spectral method based on spherical harmonics in the angular
coordinates (θ,φ) and a collocation spectral method based on Chebyshev poly-
nomials in the pseudo-radial coordinate ζ . The possibility of using a polynomial
spline-based method and finite difference schemes with or without the alternate grid
approach [62] has been added since then. The algebraic eigenvalue solver returns
a few eigenvalues near an initial guess. After a “shift and invert” transformation of
the eigenvalue problem (Eq. (5.5)), the resulting system is solved with an iterative
Arnoldi method including an accelerated convergence of the Chebyshev type [73].
The choice of spectral methods and the Arnoldi–Chebyshev solver has been made
according to previous experience in the computation of gravito-inertial modes in
spherical bodies [25, 69].

Various algebraic operations intervene when calculating the eigensolutions.
These include calculating matrix–vector products, doing dot products, and solving
linear systems for the shift and invert transformation. The first of these operations
can be done efficiently using a sparse matrix multiplication, and the second is imple-
mented using the BLAS1 library [6]. The last operation is done through nonsparse
LU factorization using the LAPACK2 library. This requires explicitly creating the
relevant matrix, a full matrix with typically 11 % nonzero elements in the fully spec-
tral case, and a band matrix with typically 26 % nonzero elements (with respect to
the relevant bands) in the finite difference case. Sparse solvers are not currently im-
plemented in TOP—it is an open question whether or not such methods would lead
to improved performances given the percentage of nonzero elements in both cases.

As a first step, a code taking into account the centrifugal deformation but ne-
glecting the Coriolis force and the perturbation of the gravitational potential was

1Basic Linear Algebra Subprograms http://www.netlib.org/blas.
2Linear Algebra PACKage http://www.netlib.org/lapack.

http://www.netlib.org/blas
http://www.netlib.org/lapack
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developed [50]. After a validation at Ω = 0, it was tested with the acoustic oscilla-
tions of a constant density ellipsoid. In this case, the eigenvalue problem is separable
using ellipsoidal coordinates, thereby allowing alternate calculations with which to
compare [49]. This code served as a reference for the development of a new code
including the Coriolis force and the perturbation of the gravitational potential. The
system of equations describing the oscillations in the two codes were completely
different, thus providing an independent test for the treatment of the centrifugal de-
formation. This reference was indeed very useful for the purposes of debugging and
validation. In the end, the agreement between the two codes reached a relative preci-
sion of �ω/ω ≈ 10−7 for low-degree (l ≤ 3), moderate-order (n≤ 10) p modes of
rotating polytropic stellar models. To test the implementation of the Coriolis force
and the perturbation of the gravitational potential in the new code, [63] used the
variational principle as an independent and exact equation relating the frequencies
and volume integrals involving the eigenmodes. Then the “variational frequency”
obtained with a computed mode was compared with the original frequency, the dif-
ference being smaller than �ω/ω= 10−8.

The accuracy of the TOP code has been tested against the different numerical
parameters. This not only includes the spatial resolution of the mode calculation
(Lmax, the highest degree of the spherical harmonic expansion, Nr the number of
Gauss–Lobatto collocation points for the Chebyshev spectral method or the number
of grid points for the finite difference schemes) but also the numerical parameters
of the stationary stellar model (its spatial resolution and the parameter that controls
its convergence). As we have already mentioned, the round-off errors of the matrix
components also affect the eigenvalue determination. In [92] it is shown that this
effect can be measured by the dispersion of the frequency distribution obtained by
changing the initial guess provided to the eigenvalue solver around the expected
value of the eigenfrequency. Before giving some results on the TOP code, it must be
recalled that the accuracy of any oscillation code strongly depends on the mode and
on the stellar models considered. The TOP code’s accuracy has been first determined
for polytropic stellar models and a large set of pressure and gravito-inertial modes in
[3, 50, 63]. For example, the relative frequency shift due to the numerical parameters
can be as low as 10−9 for low-degree (l ≤ 3), moderate-order (n≤ 10) p modes of
polytropic stellar models with Ω/ΩK ≤ 0.6. Such a high accuracy enables us to
safely explore the p-mode asymptotic regime as in [48, 64]. For low-degree gravity
modes followed up toΩ = 0.7ΩK, a relative accuracy of 5×10−8 has been achieved
in [3]. If we now consider oscillations of the more realistic rotating stellar models
of [53] computed with finite difference schemes, it has been shown in [65] that the
accuracy is lowered between 10−3 and 10−2 for low-degree, high-order p modes, as
based on the variational principle. Since then, a number of improvements and some
corrections have been included in the code [67]: the use of a nonuniform radial grid
suitable either for p modes or for g modes, an interpolation of the logarithm of the
equilibrium density and pressure, which leads to better results in the near surface
layers, a correct calculation of the ζ derivative of equilibrium quantities, which was
mistakenly calculated with respect to r , a recalculation of the model’s equipotential
surfaces thereby removing some numerical inaccuracies, and the use of the alternate
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grid approach in the finite differences thus removing spurious modes. As a result,
the accuracy reached with the variational principle is now around 10−4 to 10−3,
depending on the rotation rate and the pulsation mode.

A by-product of the TOP code validation is that calculations of p modes and g
modes in polytropic models of rotating stars can serve as a benchmark for exist-
ing and future 2-D oscillation codes. For instance, this has been the case with the
recently developed ACOR code [56, 57].

5.3 Exploring Spectra

Before discussing exploration methods, it must be emphasized that any numerical
exploration of the spectra faces two basic difficulties. First, spurious or badly re-
solved modes are generally computed together with well-resolved modes. As men-
tioned before, the number of spurious modes depends on the numerical method. But,
the fact that some of the computed modes are not well resolved is hardly avoidable
because the mode density is very high in most parts of the spectrum. This is par-
ticularly true among gravito-inertial modes. Second, the analysis of the numerical
results is much more complicated than in the nonrotating case. When independent
eigenvalue problems are solved for every degree l, each mode can generally be un-
ambiguously labeled with its radial order n (see [85] for recent developments on
this topic). In many cases, it boils down to node counting in 1-D functions. Here
however, it is not necessarily easy, or even possible, to label the 2-D eigenfunctions
with two quantum numbers by counting nodes.

To explore the oscillation spectra with a 2-D oscillation code, we may apply
two complementary approaches: either following modes as functions of the rotation
rate, or computing the full spectrum in a given frequency range at a chosen rotation
rate. Past works proved that the first method is very useful and is absolutely needed
for a first exploration. It is restricted to the necessarily limited number of followed
modes and must be complemented with a detailed scanning of the spectrum at a
fixed rotation rate.

5.3.1 Following Modes

The first method is a mode-by-mode approach. It consists in following the modes
from zero rotation to a given rotation rate,Ω , and studying how the frequency varies
and how the eigenfunctions are modified. It has been extensively and successfully
used for example in [3, 15, 24, 50, 52, 63]. Such an exploration is a necessary phase
in exploring the spectrum. It allows us to use the knowledge we have on the spectrum
at zero rotation and focus at first on the modes that are a priori the most interesting
for asteroseismology because they should have the widest horizontal scales.

The basis of the technique is as follows. Consider a p or g mode characterized by
its degree l and radial order n in the nonrotating problem and denote its frequency
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ω
(0)
n,l . We have to follow the 2l + 1 components of this mode. Thus, we fix the az-

imuthal order m in the range [−l, l] and follow the variations in frequency of the
mode by increasing the rotation rate, step by step. A code such as TOP, based on the
Arnoldi–Chebyshev method, requests an initial guess for the frequency and returns
the closest solutions to this guess.

First, we have to choose a guess. It can be extrapolated from the solutions at lower
rotation rates. A typical method is to compute a quadratic extrapolation from the
three last points. For the first point at a nonzero rotation, the guess can be computed
from the first-order perturbative term: ω(guess)

n,l,m = ω(0)n,l +mCn,lΩ , where Cn,l is the
Ledoux constant [41]. Generally, it is sufficient to consider the asymptotic values
for Cn,l ≈ 0 for p modes and Cn,l ≈ 1/[l(l + 1)] for g modes.

To select the correct solutions among the ones found around the initial guess, the
following strategy has been proposed in [3, 50, 63]:

1. For each calculated mode, we determine the two dominant degrees, l1 and l2, in
the spherical harmonic expansion of the mode.

2. We compare l1 and l2 with the degree l of the mode we are following.
3. We select the solutions such that l1 = l; if none of the solutions verifies this

criterion, we select the solutions such that l2 = l. For p modes, we can also allow
the dominant degree to be shifted by +2, or even +4.

4. If more than one solution has been selected at this point, we choose the solution
that gives the highest correlation with the mode at lower rotation.

It is easy to build an automatic procedure based on this strategy. Using such
an approach, we easily follow low-degree modes. Moreover, we easily study how
rotation progressively modifies the modes, thereby enabling us, for example, to de-
termine the regime where approximate methods are valid.

Nevertheless, there are usually two practical problems we can encounter with the
mode-following approach. A first issue comes from the so-called avoided crossings.
Two modes with the same m and the same equatorial parity cannot have the same
frequency. This implies that the two curves representing the evolution of frequency
with Ω cannot cross each other: when the frequencies get closer and closer, the
modes exchange their properties before moving away from each other. During an
avoided crossing, the two modes have the mixed properties of the two initial modes.
With a mode-following method, when the coupling is strong and the avoided cross-
ing spans a large rotation range, the method can follow the wrong branch.

The second limitation originates in the density of modes. This remark is espe-
cially true for g modes, in particular in the sub-inertial domain (ω < 2Ω). We need
the targeted mode to be close enough to the guess to be found in the returned solu-
tions. When the modes are too dense, this can become really challenging. Indeed,
according to the asymptotic relation for g modes from Tassoul [86], on a given
period interval, the number of modes of degree l scales roughly as

√
l(l + 1). More-

over, in the sub-inertial domain, there are even more modes, since inertial modes
appear. If the spatial resolutions were infinite, it would be impossible to find the de-
sired solution, because there would always be an infinite number of other solutions
closer to the initial guess than the targeted mode. In practice, the resolution is finite,
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which naturally filters the solutions, but for high spatial resolutions this problem
may persist. Another way of avoiding this difficulty is to add dissipation terms that
spread the different frequencies into the complex plane.

There is another inconvenience of the mode-following technique: obviously, this
only informs us on the modes we follow. We are then limited to information on
modes that are present without rotation. Even if it is not a problem for p modes, it
is a problem for low-frequency modes because inertial modes are not studied with
such a technique.

5.3.2 Scanning the Spectrum

Another approach to spectrum exploration is to compute the spectrum at a fixed
rotation rate over a given frequency interval. We can then scan the spectrum by pro-
gressively increasing the guess, step by step. If the incremental step is small enough,
we can be sure that all the modes that can be accurately computed at the given reso-
lution are indeed computed. To ensure the success of the scan, the following strategy
can be used: at a given step, one uses as a guess the highest eigenfrequency found
at the previous step. Such a strategy has limitations: firstly, if the mode density is
very high, the step becomes very small; secondly, when the mode density decreases
rapidly, the process can get stuck on the same set of solutions. A solution is to im-
pose a minimal step size to ensure a strictly monotonic scan of the range.

Such a scan gives a complete picture of the spectrum—at a chosen spatial
resolution—and can be useful for discovering new families of modes. However,
the price paid is the computation of a lot of useless modes. Indeed, a major part of
the time is spent on computing spurious modes or only marginally resolved modes
which are unreliable.

It is nevertheless possible to accelerate the scan if we are interested in a certain
class of modes that follow a known regularity (such as the large or small spacings).
The exploration is significantly easier when the global structure of the spectrum
is known. Thus, knowing asymptotic relations for classes of modes aids the rapid
targeting of the correct frequency range in which to look for a given mode: when a
mode of the family has been found, we can guess a small frequency interval where
the next mode following this regularity should be found. Asymptotic relations for
p and g modes are well known in the nonrotating case [86], and new relations have
recently been derived analytically for a class of p modes (see Sect. 5.4.2) [58, 59].

5.3.3 Mode Labeling

A first way to label modes is based on following method: we label a mode with the
numbers (n, l) that the mode has without rotation. It is a very convenient convention
for a first exploration. It is one of the advantages of the mode-following technique.
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Nevertheless, we have to keep in mind that the numbers l and n do not represent
the node numbers in the horizontal and radial direction: l does not necessarily cor-
respond to the dominant degree in the spherical harmonic expansion of the mode;
the number of nodes along a radius generally varies with latitude.

A second, more physical, way to label modes is to be guided by ray-based asymp-
totic theories [47, 48, 65]. As detailed in Sect. 5.4.2.1, asymptotic theory for p modes
in rotating stars allows us to classify computed modes into different families (island
modes, chaotic modes, whispering gallery modes). It is then possible for whisper-
ing gallery modes and island modes to give labels (ñ, l̃) that really correspond to a
number of nodes in the structure. For island modes, these new numbers are different
from the numbers (n, l) given with the previous method—but (ñ, l̃) and (n, l) can be
linked, as explained in Sect. 5.4.2.1.

5.4 Results

5.4.1 Testing Perturbative Methods

5.4.1.1 Deriving Perturbative Coefficients from 2-D Oscillation Codes

The mode-following technique has been applied to test approximate methods, espe-
cially perturbative approximations. In a kth-order perturbative approach, frequen-
cies are developed as functions of Ω :

ω
(pert)
n,l,m = ω(0)n,l +

k
∑

j=1

C
j
n,l,mΩ

j +O(

Ωk+1), (5.6)

where Cjn,l,m are the perturbative coefficients.
The most natural method to compute these coefficients is to use the theories

developed in the papers cited in Sect. 5.1. Nevertheless, using the mode-following
technique, it is also possible to numerically compute the coefficients Cjn,l,m since
they are directly related to the j th derivative of the function ωn,l,m(Ω) atΩ = 0. To
improve the accuracy, symmetry properties of the problem may be used as proposed
in [3, 63]. By denoting x =Ω2,

yOn,l,m =
ωn,l,m −ωn,l,−m

2Ω
and yEn,l,m =

ωn,l,m − 2ω(0)n,l +ωn,l,−m
2Ω2

(5.7)

for m≥ 0, we get

yOn,l,m =
k

∑

j=0

C
2j+1
n,l,mx

j +O(

xk+1) and yEn,l,m =
k

∑

j=0

C
2j+2
n,l,mx

j +O(

xk+1), (5.8)
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where we have used the symmetry Cjn,l,−m = (−1)jCjn,l,m. This symmetry is triv-
ial: by changingΩ into−Ω andm into −m in the equations, one recovers the same
problem. We compute yO and yE on a fine grid of k points in Ω around zero to
calculate the terms Cjn,l,m using (k − 1)th-order interpolating polynomials. The de-

termination of the coefficients Cjn,l,m is then accurate to the (2k − 1)th-order in Ω .
Coefficients can further be simplified by considering their dependence on m:

C1
n,l,m = mCn,l, (5.9)

C2
n,l,m = S1

n,l +m2S2
n,l, (5.10)

C3
n,l,m = mT 1

n,l +m3T 2
n,l . (5.11)

The form of the 1st-, 2nd-, and 3rd-order coefficients comes from [41, 74, 82], re-
spectively. Reference tables of coefficients computed in a polytropic model with
a polytropic index μ = 3 can be found in [3, 63] for p and g modes. Coefficients
calculated from the complete 2-D problem can be used to test and validate the im-
plementation of perturbative methods.

5.4.1.2 Limits of Perturbative Approach

To test the limits of perturbative methods, we can compare the frequencies predicted
by a perturbative method with the frequencies computed with a 2-D oscillation code.
Such limits have been derived for low-degree (l ≤ 3) p and g modes. Several studies
used perturbative coefficients derived from the fitting of polynomials, as described
in the previous section [3, 50, 52, 63], whereas others used existing perturbative
methods [9, 84].

In [3, 63] the domains of validity of perturbative approaches have been derived
from computations in a fully distorted μ = 3 polytropic model. To define the do-
mains of validity of perturbative approaches, we fix the maximal departure δω we
allow between the perturbed frequencies ω(pert)

n,l,m and the “exact” frequency ωn,l,m
computed from the complete 2-D problem. For each mode (n, l,m) and each ap-
proximation order, the domain of validity [0,ΩV ] is determined by ΩV , defined to
be the maximal value such that for all Ω ≤ΩV , |ω(pert)

n,l,m(Ω)− ωn,l,m(Ω)| ≤ δω. In
Fig. 5.1 the polytropic model has been rescaled with the mass and radius of typical
A-type stars (M = 1.9M�, R = 2.3R�), and the domains of validity are derived for
a tolerated departure of 0.1 µHz, representative of errors in current seismic observa-
tions.

If we first focus on p modes, we notice that third-order terms do not significantly
extend the validity domains. Second order is generally insufficient for rotation rates
above Ω ≈ 0.1ΩK at low frequency and even less so at high frequency. Indeed, the
extent of the validity domains clearly decreases for high-frequency p modes. More
precisely, we notice that the validity range of first-order method is approximately
limited by ΩV =ΩK

√
2δω/ω. We interpret this limit as due to an error of the size
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Fig. 5.1 Evolution of the
frequencies of l = 0,1,2,3
modes. Frequencies are
computed in the co-rotating
frame. Perturbative
approximations have been
tested for typical A-type stars
(δ Scuti, γ Doradus). The
green/cyan/red parts of the
curves indicate that
1st/2nd/3rd order is sufficient
to reproduce complete
calculations within an error
bar of δν = 0.1 µHz. The
magenta line indicates
ω= 2Ω , and the purple curve
ω= 2δωΩ2

K/Ω
2

of the resonant cavity, that is, an error of the form δω/ω= δL/L (L is a length), and
we identify δL/L with the star’s flatness (Re −Rp)/Re, which is know to be equal
to 1

2 (Ω/ΩK)
2 for small distortions. Comparisons done in [84] showed that valid-

ity domains of second-order methods can be extended by adding a correction ac-
counting for avoided crossings. By including second-order near-degeneracy effects,
high-frequency modes of solar-type stars has been reproduced up to Ω ≈ 0.09ΩK.

Concerning g modes, the most striking feature visible in Fig. 5.1 is the abrupt
breakdown of the perturbative methods in the subinertial domain ω < 2Ω . We also
attribute this limit to a change in the size of the resonant cavity that is not captured
by perturbative methods. As described below (Sect. 5.4.3.1), this change is due to
the appearance of a forbidden region where g modes cannot propagate.

5.4.2 Structure of p-Mode Spectra

5.4.2.1 Mode Classification

The numerical exploration of p-mode spectra has revealed that the spatial structures
of the modes in rapidly rotating stars are quite different from those in the nonrotating
case. When rotation increases, we notice that the kinetic energy of initially low-
degree modes tends to concentrate in the equatorial region under the effect of the
centrifugal force [13, 50]. Moreover, at a given rotation rate, modes present very
different structures. It has only been possible to fully understand these differences
and classify the modes thanks to the development of a ray theory of p modes in
rotating stars [47, 48]. Details on this asymptotic theory can be found in the work
of Pasek and Georgeot, Chap. 6 of this volume.

In the asymptotic regime, i.e., at high frequency, it is shown that the p-mode spec-
trum is the superimposition of different subspectra. Each subspectrum is associated
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Fig. 5.2 Three examples of p modes in a μ= 3 polytropic star rotating at Ω = 0.6ΩK: (a) whis-
pering gallery mode; (b) chaotic mode; (c) island mode. These plots show the variable P̂ /

√
ρ0 in

a meridional plane. Figure after [65]

with a specific family of acoustic rays. There are three families of rays, which lead
to three families of modes: (a) the whispering gallery modes; (b) the chaotic modes;
(c) the island modes. We exhibit a representative mode from each class in Fig. 5.2.

• The whispering gallery modes (Fig. 5.2(a)) are similar to the modes we find in
nonrotating stars. At high rotation rates, they only exist if they have a large num-
ber of latitudinal nodes. For these modes, we are still able to recognize the original
structure of the modes (i.e., at Ω = 0).
• The chaotic modes (Fig. 5.2(b)) are associated with chaotic trajectories in the ray

dynamics. It is essential to notice that, even if rays are chaotic, the modes that
are built as constructive interferences of these rays do not have the properties
of Hamiltonian chaos. Chaotic modes are characterized by more irregular nodal
lines, and, in contrast to p modes of non-rotating stars, they propagate down to
the star’s center. For a given frequency range, they always correspond to modes
with lower degrees than whispering gallery modes.
• The island modes (Fig. 5.2(c)) are associated with stable periodic trajectories

in the ray dynamics. The energy of the mode is concentrated around this stable
trajectory. It is possible to count the number of nodes along this trajectory (we
denote this number ñ) and in the transversal direction (we denote it l̃). We find
these modes by following low-degree modes. It is possible to link l̃ and ñ to the
degree l and order n of the corresponding mode at Ω = 0 through the relations

ñ= 2n+ ε and l̃ = l − |m| − ε
2

, (5.12)

where ε = (l +m) mod 2 indicates the equatorial parity of the mode [60].

5.4.2.2 Regular Frequency Spacings

Regularities in frequency spectra are helpful in identifying modes in observations.
In the absence of rotation, p-mode frequencies asymptotically follow Tassoul’s rela-
tion [86], which to first order is ωn,l =Δ0(n+ l/2+α), where α is a slowly varying
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function of frequency, and Δ0 = π/τc a constant directly related to the stellar struc-
ture (τc is the stellar acoustic radius). Such a relation is observationally verified in
the Sun (e.g., [28]). The regularity in mode distribution is clearly found in other
solar like stars (e.g., [8, 11, 55]). Finding this regular spacing is a first step toward
identifying modes. Moreover, it is sometimes possible to measure Δ0 and thus put
constraints on the star, without necessarily identifying modes individually.

The evolution of these regularities as functions of the rotation rate has been ex-
plored numerically by [50, 64, 65]. When the rotation rate increases, the centrifugal
force first induces a contraction of the p-mode spectrum toward low frequencies
[50], as can be seen in Fig. 5.1. Moreover, Tassoul’s relation is no longer followed.
For instance, the so-called “small separation,” ωn,l − ωn−1,l+2, which is small be-
cause it vanishes to first-order in Tassoul’s development, is no longer small at high
rotation rates. In rotating stars, a new organization of the spectrum appears. Empir-
ically, low-degree modes have been shown to asymptotically follow

ωn,l,m = nΔn + lΔl + |m|Δm + α±, (5.13)

where Δn, Δl , Δm, and α± are parameters that depend on the stellar structure
[50, 64, 65]. The parameter α+, respectively α−, corresponds to symmetric modes
(ε = 0), respectively antisymmetric modes (ε = 1). Equation (5.13) can also be ex-
pressed with the natural labeling of island modes defined in the previous section
(ñ, l̃,m). It reads

ω
ñ,l̃,m
= ñΔ̃n + l̃Δ̃l + |m|Δ̃m + α̃± (5.14)

with Δ̃n =Δn/2, Δ̃l = 2Δl , Δ̃m =Δl+Δm, α̃+ = α+, and α̃− = α−+Δl−Δn/2.
It has been found numerically that α̃+ ≈ α̃− ≈ α̃ [64]. The dependence on |m| rather
than m originates in the dominance of the effects of the centrifugal force over those
of the Coriolis force which are negligible at high frequency—thus, in the asymptotic
regime.

The parameter Δn plays a similar role to Δ0 in nonrotating stars. Indeed, Δ0 is
known to scale as

√
M/V , where M/V is mean density of the star (e.g., [90]). For

rotating stars, we also find a good correlation between Δn and
√
M/V [64].

These empirical asymptotic relations have been explained thanks to the develop-
ment of an asymptotic theory for island modes [58, 59]. Thus, it is possible to link
the various parameters in Eq. (5.14) to internal properties of the star. The reader
should refer to Chap. 6 of this volume for details.

5.4.3 Structure of g-Mode Spectra

Gravito-inertial modes are generally computed with some approximations on the
effects of rotation: either using the traditional approximation, as mentioned in
Sect. 5.1, or with 2-D oscillation codes fully taking into account the Coriolis force
but ignoring [25, 77] or approximating [43] the centrifugal deformation. The fo-
cus of these 2-D calculations [10, 75] has been to determine the unstable modes
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Fig. 5.3 Three examples of g modes in a μ = 3 polytropic stellar model at zero rotation (top)
and at Ω = 0.7ΩK (bottom). These plots show the kinetic energy of the modes in a meridional
plane. (a) Mode that stays in the superinertial domain (ω > 2Ω) and is not too affected by rotation.
(b) Mode that enters in the subinertial domain (ω < 2Ω), affected by the appearance of a forbidden
region in the polar region. (c) Mode in the superinertial domain that becomes a rosette mode

of low-frequency pulsators like SPB stars and to compare the results with the ob-
served frequency spectra. A systematic numerical exploration of the gravito-inertial
spectrum performed with a complete 2-D oscillation code is still lacking. We started
such an exploration with the TOP code by following low-degree gravity modes of
μ= 3 polytropic stellar models fromΩ = 0 toΩ = 0.7ΩK. More precisely, we con-
sidered l ≤ 3 modes in both low- and high-order ranges: n ∈ [−14,−1] for l = 1,
n ∈ [−20,−16] ∪ [−5,−1] for l = 2 and l = 3. The first results of this study have
been published in [3, 4] and are summarized below.

5.4.3.1 Mode Classification

The computed modes can be classified in two distinct families according to their spa-
tial distribution. The first family contains the vast majority of the followed modes
and does not show striking differences with the modes reported in previous works.
The spatial distribution of these modes is characterized by a smooth evolution with
rotation, the horizontal and radial length scales remaining of the same order of mag-
nitude as rotation grows. Figures 5.3(a) and 5.3(b) illustrate this evolution in two
cases: when the mode remains superinertial (ω > 2Ω) and when the mode becomes
subinertial (ω < 2Ω). The main change is the appearance of a polar, approximately
conical, forbidden region for subinertial modes. The critical angle, which is also
present in the traditional approximation, is close to arccos(ω/2Ω) when N �Ω ,
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although a refined expression of the forbidden region can be determined with the
method of characteristics [25].

In contrast with this first family, some of the followed modes undergo a drastic
modification of their spatial distribution. As illustrated in Fig. 5.3(c), the length
scales and the geometry of the initially l = 3 mode have been strongly modified.
This change already appears at rather low rotation rates: nearΩ ≈ 0.1ΩK, this mode
is already significantly affected. Several modes of this type are also found within a
small frequency interval. To our knowledge, this type of mode has not been reported
before. We called them “rosette” modes because of their spatial distribution. Along
with this numerical exploration, we constructed a ray-based asymptotic theory for
gravito-inertial modes. Just as for the island p modes, it turns out that it is possible
to associate the rosette modes with island structure of phase space formed around
periodic orbits [4].

5.4.3.2 Influence of the Centrifugal Distortion

Beyond mode classification, many other open issues on gravito-inertial modes can
be addressed with this numerical exploration. The effects of the centrifugal force is
one of them. Figure 5.4 displays the frequencies of the (n=−13, . . . ,−10, l = 1,
m=−1,0,1)modes as functions of the stellar rotation. The calculations performed
with the centrifugally distorted stellar model are compared with computations made
with a spherical model whose radius corresponds to the polar radius of the distorted
model. This figure shows that the centrifugal distortion has a significant effect above
Ω ≈ 0.4ΩK and that this effect is much stronger on the (l = 1, m=−1) modes than
on the other l = 1 modes. This is not surprising as the outer turning point of lower-
frequency gravity modes comes closer to the surface where the centrifugal distortion
is stronger. Another interesting aspect of this comparison is to provide constraints on
the validity of the traditional approximation. Indeed, this approximation ignores the
centrifugal force and is thus expected to fail when centrifugal effects are important.

5.4.3.3 Period Spacings

Following low-degree gravity modes also enables us to investigate regular period
spacings in rapidly rotating stars. At zero rotation, the uniform asymptotic period
spacing of gravity modes of the same degree l and consecutive order n is a cru-
cial tool for mode identification. At higher rotation rates, [4] finds that this period
spacing is no longer uniform but is a function of the parameter η = 2Ω/ω and of
the azimuthal number m. These results are indeed well reproduced by the period
spacing derived from the traditional approximation. Although some discrepancies
arise when the centrifugal distortion becomes significant, these discrepancies re-
main small despite the fact that Fig. 5.4 suggests they are large for the period itself.
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Fig. 5.4 Evolution of the frequencies of the (n = −13, . . . ,−10, l = 1, m = −1,0,1) modes.
Solid black lines indicate the complete 2-D computations. Dashed red lines show the results ob-
tained by ignoring the centrifugal distortion (the equilibrium model is kept spherical). To compare
the two results, we assume that the polar radii of the distorted and spherical models are the same.

On the y-axis, the frequencies are normalized byΩp
K =

√

GM/R3
p , where Rp is the common polar

radius

5.4.3.4 Discussion and Further Works

These preliminary results from following low-degree modes suggest that the system-
atic numerical exploration using complete 2-D oscillations might be as fruitful for
gravito-inertial modes as for p modes. A scanning exploration method will also be
necessary, in particular to study purely inertial modes that cannot be followed from
zero rotation. Again, the construction of an asymptotic theory is expected to com-
plement the numerical approach by providing a global view of the mode properties.
One of the issues that needs further attention is the validity of the traditional approx-
imation (see [34] for a recent review on the subject). Here, we have seen contrasting
indications because the traditional approximation cannot account for the centrifugal
effects and most probably for the rosette modes but at the same time yields good
predictions on the period spacings. Concerning mode stability, the strong discrep-
ancies described in [1] are attributed to the importance of mode coupling which
does not occur in the traditional approximation. It will also be important to test this
approximation in the presence of convective layers (core or envelope). Indeed, the
traditional approximation does not allow the propagation of gravito-inertial waves
coming from the radiative layers into the convective zone, while this is possible in
the general case for subinertial waves, as illustrated by the method of characteris-
tics in [25]. Another issue concerns the existence of the so-called singular modes
clearly observed for a Boussinesq fluid within a spherical container [26]. In this
case, mode concentration onto a particular characteristic is caused by the wave fo-
cusing that occurs at the solid surface. Such modes have not been found in our
compressible polytropic models, and this can be attributed to the fact that waves do
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not experience focusing effect of solid-body boundary conditions at the star’s sur-
face. Instead, it is the near-surface abrupt density decrease that provokes the back
refraction of outwards propagating wave, keeping them within the star without the
focusing effect.

5.5 Conclusion

Exploring the oscillation spectra of stars with 2-D oscillation codes such as TOP
is needed to fully understand the effects of rotation on stellar oscillations. As dis-
cussed in Sect. 5.2, developing such 2-D codes is highly challenging. The required
numerical resources can become quite large: as soon as the star is not slowly ro-
tating, it is not sufficient to consider only a few spherical harmonics to describe
the modes. In the various works presented in this chapter, at least 20 and up to 80
spherical harmonics were requested—according to the rotation rate and the mode
considered—to ensure the convergence of the solutions. This is necessary to reach
a reasonable accuracy on the eigenfrequencies and the eigenmodes.

The mode-following technique, described in Sect. 5.3.1, is very useful in the
exploration of the oscillation spectrum and in understanding how it is progres-
sively modified by the inertial forces when the rotation rate grows. As we saw in
Sect. 5.4.1, it also allows us to test approximate techniques, such as perturbative
methods, and to see at which rotation rate these methods fail.

Nevertheless, to fully understand and interpret the change of the spectrum and
mode properties with rotation, asymptotic ray theory has proven to be a powerful
tool. For p modes (Sect. 5.4.2), it allows us to easily classify the modes, interpret the
found regularities, and specify their links with the structure of the star. Following
the path of this successful study, a similar exploration of g modes has been initi-
ated (Sect. 5.4.3) opening the way for new explorations, especially for testing the
traditional approximation or for exploring inertial modes.

Our improved understanding of frequency spacings gives us a new framework
[51] to interpret the regularities observed in data (e.g., [33, 94]) and identify modes.
Moreover, 2-D computations also help in interpreting spectroscopic and multicolor
data of pulsating stars. Since these computations provide maps of the modes at the
stellar surface—which are no longer spherical harmonics—it allows realistic predic-
tions of temporal variations of the spectral line profiles and mode amplitude ratios
between different photometric bands [67].

A future improvement will be to include nonadiabatic terms in the TOP code so
as to be able to predict the stability or instability of modes. Such improvements will
allow the construction of realistic spectra which can at last be confronted with obser-
vations, thereby allowing us to finally interpret pulsation spectra in rapidly rotating
stars, currently a very difficult task. However, this will require new generations of
2-D models. We naturally imagine in the near future a symbiotic relationship be-
tween the ESTER code and the TOP code, the former providing models and the
latter pulsation modes.
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Chapter 6
Regular and Irregular Pressure Modes
in Rapidly Rotating Stars

Michael Pasek and Bertrand Georgeot

Abstract In this lecture, we review the recent developments in the asymptotic char-
acterization of the pressure-mode oscillation spectrum of rapidly rotating stars. We
give an expository introduction to the asymptotic techniques based on ray dynamics
that were used to obtain them, spanning results from Hamiltonian dynamical sys-
tems, chaos theory and complex quantum systems. Finally, such asymptotic tech-
niques are applied to an important subset of the pressure mode spectrum to obtain a
semi-analytical formula for regular frequency spacings.

6.1 Introduction

The asteroseismic data gathered by the space missions CoRoT [4] and Kepler [18] is
giving us unprecedented information on oscillation modes of pulsating stars, for var-
ious parts of the HR diagram. Among them, non-evolved massive and intermediate
mass stars are known to be mostly rapid rotators [32]. It is known from experience
of solar-type pulsators that an asymptotic theory is important for mode identifica-
tion and interpretation [12]. For slowly rotating stars (e.g. the Sun), the asymptotic
theory of Tassoul [33, 36] has provided a successful bedrock for these studies. How-
ever, Tassoul’s theory requires approximate spherical symmetry and thus cannot be
used for rapidly rotating stars that can depart significantly from it [25]. The focus
of this lecture is to explain the recent developments obtained in [20, 21, 27, 28] on
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building an asymptotic theory for pressure modes (p-modes) in rapidly rotating stars
using acoustic ray dynamics. Results will be checked by comparisons with modes
obtained by numerical computations of oscillations in a polytropic stellar model at
different rotation rates. The lecture is organized as follows. In Sect. 6.2, we present
the short-wavelength limit of acoustic waves and the evolution of its dynamics with
rotation. The different classes of modes that can be constructed from the ray limit are
then introduced in Sect. 6.3. In Sect. 6.4, we study in detail one important class of
modes, namely the island modes, and give semi-analytical formulae for their ampli-
tude distributions and frequencies. Finally, the chaotic modes are briefly introduced
in Sect. 6.5. For a complementary introduction, one can see [19].

6.2 The Ray Limit of Acoustic Waves

6.2.1 Waves in Their Short-Wavelength Limit

Many wave equations are described by trajectories of a Hamiltonian system in the
limit of short wavelength. Depending on the system considered, this limit takes dif-
ferent names. In the case of wave optics, this limit corresponds to geometrical op-
tics. In the case of quantum mechanics, the short wavelength limit gives the classical
limit where the quantum world recovers the classical mechanics of Newton. In the
same way, the acoustic waves that cause pressure oscillations of stars have a similar
limit in the form of acoustic rays.

Calculations that are detailed in [21] show that acoustic rays in stars are described
by the eikonal equation

ω2 = ω2
c + c2

s k
2, (6.1)

where ω is the mode frequency, cs the sound speed, and ωc the cut-off frequency of
the stellar model whose sharp increase in the outermost layers of the star provokes
the back reflection of acoustic waves. An acoustic ray is a trajectory tangent to the
wave vector k at the point x; this naturally leads to Hamiltonian classical equations
of motion [15].

6.2.2 Hamiltonian Systems

We have seen that the acoustic rays correspond to trajectories of a Hamiltonian
system. Such systems are a subclass of dynamical systems, which are defined in a
phase space with N spatial coordinates q1, q2, . . . , qN and N associated momentum
coordinates p1,p2, . . . , pN . Hamiltonian systems are characterized by the existence
of a Hamiltonian function H(q1, q2, . . . , qN ,p1,p2, . . . , pN, t) that describes the
evolution of the system through Hamilton’s equations [2]

∂H

∂pi
= q̇i , ∂H

∂qi
=−ṗi , (6.2)
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Fig. 6.1 Illustration of the
construction of a Poincaré
Surface of Section (PSS),
where the fixed coordinate
is q3, and intersections are
chosen for rays coming
downwards

where dot denotes the time derivative. A simple example of such a system consists
of a kinetic term plus a potential V with H = p2/2+ V (q). The dynamics of the
system takes place in phase space, and the volume of phase space is conserved
through the evolution (no dissipation). Additionally, ifH does not depend explicitly
on time, there is a conserved quantity corresponding to the Hamilton function H
itself, which is usually the energy of the system.

An important tool that will be used later is the Poincaré surface of section (PSS)
[26]. Indeed, for systems with two degrees of freedom, the phase space is of dimen-
sion four and therefore hard to visualize. However, if there is a conserved quantity
such as energy, the motion actually takes place on a manifold of dimension three. If
additionally we choose a surface transverse to the flow of trajectories and plot cross-
ings of these trajectories with this surface, the motion becomes discrete (sometimes
called a “Poincaré map”) and two-dimensional, thus easier to visualize (cf. Fig. 6.1).
For many choices of the surface of section, the discrete dynamics of the Poincaré
map is still Hamiltonian. In this new representation, the (discrete) time corresponds
to the number of crossings of the PSS and does not necessarily reflect time in the
continuous system: two trajectories of the continuous system may cross the surface
of section at different times. The PSS enables us to view the different structures of
phase space and in particular to easily distinguish between integrable and chaotic
systems.

6.2.3 Integrable and Chaotic Hamiltonian Systems

Generic Hamiltonian systems fall between two extreme classes. The first corre-
sponds to integrable systems. In this case, the system possess as many independent
constants of motion as degrees of freedom. In Hamiltonian mechanics, two con-
stants of motion f1, f2 are said to be independent, or in involution, if their Poisson
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bracket vanishes, where the Poisson bracket is defined as [2]

{f1, f2} =
N
∑

i=1

(
∂f1

∂qi

∂f2

∂pi
− ∂f1

∂pi

∂f2

∂qi

)

. (6.3)

Thus, for an integrable system with a 2N -dimensional phase space, N constants
of motion I1, . . . , In exist. For example, in systems with one degree of freedom,
the conservation of energy is enough to ensure that the system is integrable. In the
case of integrability, one can show that there exists a canonical change of variables
(canonical means that this change of variables preserves the form of the equations
of motion Eq. (6.2)) to a specific type of variables, called action-angle variables [2].
In this new set of coordinates, Hamilton’s equations of motion become

İi = 0, θ̇i = ωi, (6.4)

where the ωi are constant. It is easy to see that in this choice of variables, the mo-
tion takes place on N -dimensional tori in the 2N -dimensional phase space. These
surfaces are the so-called invariant tori, in the sense that they are invariant under
the dynamics. It must be noted that these surfaces are tori in a topological sense,
i.e. they may appear very distorted in a given choice of coordinates. For integrable
systems with two degrees of freedom, trajectories follow two-dimensional tori and
appear as lines on the PSS. Famous examples of classical integrable systems are the
harmonic oscillator, the square and circular billiards, the two-body Kepler problem,
etc. In a sense, integrable systems are exactly solvable models.

At the other extreme, there exist so-called chaotic systems. Their discovery was
more recent. It is probably fair to say that up to the 20th century, there was a belief
among scientists that most dynamical systems were integrable, the problem in un-
derstanding them being to find the right action-angle coordinates. Through the work
of Poincaré and numerical simulations performed in the 20th century, it has been
found that in general, many systems display various degrees of chaos. Chaotic sys-
tems have no constant of motion besides energy, and thus motion is not restricted
to tori or other lower-dimensional surfaces in phase space. Rather, the motion is
ergodic: most trajectories fill the energy shell densely. Hence, chaotic trajectories
fill domains on the PSS. The most extreme degree of chaos corresponds to hard
chaos, with an exponential separation of nearby trajectories, implying the famous
exponential sensitivity to initial conditions (the “butterfly effect”). Famous exam-
ples of chaotic systems include the Sinai billiard, Bunimovich billiard (stadium),
three-body Kepler problem, etc.

The generic transition to chaotic behaviour for a perturbed integrable system
is described by the famous Kolmogorov–Arnold–Moser (KAM) theorem [2, 26].
Most Hamiltonian systems are between these two extremes, in the sense that their
phase space displays integrable islands surrounded by chaotic seas; such systems
are called mixed systems.
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Fig. 6.2 Acoustic ray trajectories in a non-rotating star (left), and the associated Poincaré Surface
of Section (right) taken at a fixed radial distance from the stellar surface corresponding to a radius
r = rp (visible in pink on the left figure). The coordinates displayed on the surface of section
are the scaled wavenumber latitudinal component kθ /ω, where ω is the mode frequency, and the
colatitude θ

6.2.4 Ray Dynamics in Rotating Stars

Equipped with the tools of Hamiltonian mechanics, one can study the dynamics of
acoustic rays in rotating stars. This task was done in [20], with the Hamiltonian

H =
√

c2
sk2 +ω2

c (6.5)

for a sequence of polytropic stellar models with different values of the rotation rate.
It was found that for a non-rotating stellar model (i.e.Ω = 0), the dynamical system
is integrable, i.e. the ray trajectories are stable and localized on invariant tori in
phase space. In Fig. 6.2 one can see that in a non-rotating polytropic stellar model,
as expected, intersections of a ray with the PSS form lines (at a constant kθ/ω).

When the rotation rate becomes significant, the ray trajectories are profoundly
modified, and several types of rays emerge with different behaviours, following
a KAM-type transition. In Fig. 6.3 one can see three types of rays computed
for a polytropic stellar model of index N = 3 rotating at Ω/ΩK = 0.59 (where

ΩK =
√

GM/R3
eq is the limiting rotation rate for which the centrifugal acceleration

equals the gravity at the equator, M being the stellar mass and Req the equato-
rial radius). A first group corresponds to so-called whispering gallery rays, which
follow the boundary (their name comes from the fact that the associated modes
are responsible for the transmission of whispers from one part of a gallery to the
other). A second group of rays forms islands, i.e. structures centred on a stable
periodic ray. The main ones are 2-period and 6-period islands that are labelled ac-
cording to the number of times their central periodic ray crosses the PSS. Both
types of rays correspond to stable zones of phase space and accordingly, iterates of
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Fig. 6.3 Poincaré Surface of Section (centre panel) for a star rotating at Ω/Ωk = 0.59, with
the corresponding rays in position space (panels (a), (b), (c) and (d)). (a) 2-period island ray
(blue) with the central periodic ray shown as the orange line between points a and b, (b) a chaotic
ray (red), (c) a 6-period island ray (magenta), (d) a whispering gallery ray (green). These rays
are highlighted by their respective colours on the PSS. The coordinates displayed on the PSS
are the scaled wavenumber latitudinal component kθ /ω, where ω is the mode frequency, and the
colatitude θ (from [21])

the Poincaré map corresponding to the same trajectory form lines on the PSS. In
contrast, there exists a third type of rays, called chaotic rays, which are unstable
trajectories of the Hamiltonian system. Iterates from one such trajectory fill up a
whole two-dimensional area in the Poincaré Surface of Section, corresponding to
the property of ergodicity. Acoustic rays in rotating stars have therefore a rich dy-
namic, and we see in the sequel how this can be used to infer asymptotic properties
of p-modes.

6.3 Construction of Modes from the Ray Limit

6.3.1 Modes Associated to the Different Types of Rays

Knowing the ray limit of the wave equation, it is possible to infer properties of
the modes using tools which have been developed in the quantum chaos domain
[17, 26]. An important result is that, asymptotically, one can associate different
types of modes to the different phase space zones [7, 29]. But phase space is not
well defined in quantum mechanics. Position and momentum represent independent
bases with respect to which the wavefunction can be written, whereas classical phase
space distributions are functions of both. This is due to the fact that the momentum
and position operators do not commute in a wave context. Nevertheless, it is pos-
sible to define phase space distributions for wave functions [11, 37], e.g. Husimi



6 Regular and Irregular Pressure Modes in Rapidly Rotating Stars 121

Fig. 6.4 Four typical modes
with m= 0 of a stellar model
rotating at Ω/ΩK = 0.59 and
their corresponding Husimi
distributions on the PSS.
(a) A 2-period island mode
(blue), (b) a chaotic mode
(red), (c) a 6-period island
mode (magenta) and
(d) a whispering gallery mode
(green). The coordinates
displayed on the surface of
section are the scaled
wavenumber latitudinal
component kθ /ω, where ω is
the mode frequency, and the
colatitude θ (from [21])

distributions that project wavefunctions onto Gaussian wavepackets of width Δx
such that

H (x, k̃)=
∣
∣
∣
∣

∫

Ψ
(

x′
)

exp

(−‖x′ − x‖2

2Δ2
x

)

exp
(

iωk̃ · x′)dx′
∣
∣
∣
∣

2

, (6.6)

where Ψ (x′) is the mode amplitude distribution in position space,

exp
(−∥∥x′ − x

∥
∥

2
/
(

2Δ2
x

))

exp(iωk̃)

the Gaussian wavepacket, and k̃= k/ω the scaled-wavevector. This procedure im-
plies that one cannot obtain details smaller than a certain scale set by the frequency
(or � in quantum mechanics), according to the uncertainty principle ΔxΔk̃ ≈ 1/ω,
where Δ

k̃
is the width of the wavepackets in the scaled-wavevector representation.

Figure 6.4 shows the phase space distributions on the Poincaré section of several
p-modes in a rapidly rotating stellar model together with their amplitude distribu-
tions. This allows one to check that, indeed, to each of the four classes of trajectories
shown in Fig. 6.3 one can associate specific modes which are localized in the corre-
sponding phase space regions in the high-frequency limit.
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Fig. 6.5 Frequency
sub-spectra of four classes of
modes for Ω/ΩK = 0.59 and
m= 0. Frequencies are given
in units of ω1, which is the
lowest acoustic mode
frequency of the stellar
model. (a) 2-period island
modes, (b) chaotic modes,
(c) 6-period island modes,
(d) some whispering gallery
modes; For sub-spectra (a)
and (d), the height of the
vertical bar specifies one of
the two quantum numbers
(from [21])

6.3.2 The Different Subspectra

The different types of modes mentioned at the end of the previous section corre-
spond to independent subspectra. Near-integrable regions (stable islands and whis-
pering galleries) produce regular sub-spectra, in the sense that we can write their
mode frequencies as ωi = fi(ni, �i,m), where ni, �i,m run through the integers.
On the other hand, the chaotic region produces an irregular sub-spectrum with spe-
cific statistical properties. This can be seen in Fig. 6.5, where the numerical spectra
of the four classes of modes are represented. Spectra (a), (c) and (d) correspond to
near-integrable zones in phase space and can be described by a function of integers
(quantum numbers). This is similar to what happens in a spherical star, although the
spectra are described by a different function of the quantum numbers. Subspectrum
(b) corresponds to the chaotic phase space region and is not expected to show such a
regularity. It should be noted that in observational data, these four different spectra
will be present in the same frequency range, and thus some care is needed in sepa-
rating them. However, this task can be made easier by exploiting the difference in
visibility of the modes.

6.3.3 Visibility of the Modes

The presence of different sets of modes in numerical computations does not im-
ply that they are all equally present in observational data. Indeed, several factors
can influence the visibility of the modes. One of the most important effects is the
cancellation of mode amplitudes in the disk-integrated light. In the data displayed
in Fig. 6.6, we estimate this effect by integrating the surface Lagrangian tempera-
ture perturbation of axisymmetric modes computed for the Ω = 0.59ΩK rotating
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Fig. 6.6 Frequency spectra for m= 0 modes and Ω/ΩK = 0.59, where the amplitudes are given
by the visibility (disk-averaging factor) for a star seen pole-on i = 0 (upper panel) and equator-on
i = π/2 (lower panel). Frequencies are given in units of ω1, which is the lowest acoustic mode
frequency of the stellar model. 2-period island modes (blue), chaotic modes (red), 6-period island
modes (magenta) (from [21])

polytropic star. The normalization is such that the disk-averaging factor of a hypo-
thetical mode uniformly distributed on the surface and seen pole-on is unity. Fig-
ure 6.6 shows the spectrum of modes whose disk-averaging factor exceeds 2.5 per-
cent. The results show that many more modes are visible for rapidly rotating stars
than for spherical stars (three times more for the rotation considered). Among the
four classes of modes, the 2-period island modes and the chaotic modes have simi-
lar visibilities and are significantly more visible than the 6-period island modes and
the whispering-gallery modes. At high rotation rates, we thus expect the oscillation
spectrum of p-modes to be dominated by the 2-period island modes and chaotic
modes.

6.4 Asymptotic Theory of Island Modes

6.4.1 Regularities in Numerical Computations of Oscillation
Spectra

The numerical exploration of p-modes in rapidly rotating stellar models has hinted at
the existence of a subset of modes that have regular frequency spacings in the high-
frequency regime [22, 30] (see also the contribution of J. Ballot and F. Lignières in
this volume). Two examples of such modes are shown in Fig. 6.7.
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Fig. 6.7 Pressure amplitude P
√
d/ρ0 on a meridional plane for a polytropic stellar model, with d

the distance to the rotation axis and ρ0 the equilibrium density of the model. The modes shown cor-
respond to n= 50,m= 0 and �= 0 (left), �= 1 (right) at a rotation rate ofΩ/ΩK � 0.460, where
ΩK = (GM/R3

eq)
1/2 is the limiting rotation rate for which the centrifugal acceleration equals the

gravity at the equator, M being the stellar mass and Req the equatorial radius. Colours denote
pressure amplitude, from red (maximum positive value) to blue (minimum negative value) through
white (null value)

For slowly rotating pulsating stars, asymptotic frequency regularities were, and
still are, successfully used for mode identification and frequency inversion. The the-
oretical basis for such studies is Tassoul’s formula [33], whose first order may be
written as follows:

ωn,� �Δ
(

ns + �s
2
+ 1

4
+ αs

)

, (6.7)

where ns , �s are quantum numbers, αs is a constant that depends on surface proper-
ties, and Δ is the large frequency separation such that

Δ= 2π

(

2
∫ R

0

dr

c(r)

)−1

. (6.8)

Tassoul’s formula for frequency regularities can only be derived for a (nearly) spher-
ical star. Nevertheless, as we have seen, similar regularities are also found in the
oscillation spectrum of rapidly rotating stellar models. It would thus be desirable
to derive an asymptotic formula akin to Tassoul’s to describe these spacings. We
explain here how it is indeed feasible, at least for some specific regular subsets of
the p-mode spectrum. Among these regular subsets, we will focus on the subset
of 2-period island modes that is the largest group of near-integrable modes. They
should be also the most visible regular modes in observations, from the results of
disk-averaging computations [21] (see Sect. 6.3.3).

As we have seen, when the spatial distributions of island modes are projected
onto phase space with Husimi distributions, the island modes fall on the 2-period
stable island structures of phase space. So, island modes are localized on stable
islands in the high-frequency regime. Therefore, solutions to an approximate wave
equation in the vicinity of the stable island’s central ray should turn out to be close
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in frequencies and in amplitude distributions to the full island modes. The manner
in which this approximate wave equation can be obtained and solved is described
in [3] and sketched in the following. For previous applications of the method, one
can consult e.g. [34, 35, 38].

6.4.2 Asymptotic Formula for the Island Mode Spectrum

For high-frequency p-modes, it is reasonable to neglect the perturbations of the grav-
itational potential (Cowling approximation) [1], as well as the Coriolis force, whose
effect on pulsation frequencies is known to be weak in this regime [22, 30]. We thus
obtain the following equation on pressure perturbations Φm in the meridional plane
of the star as [21]:

ΔΦm + ω
2

c̃2
s

Φm = 0, (6.9)

where ω is the frequency of the harmonic perturbation, d is the distance to the
rotation axis, c̃s is such that

c̃s = cs
√

1− 1
ω2 (ω

2
c + c2

s (m
2−1/4)
d2 )

, (6.10)

and the quantum numberm is the azimuthal node number of the mode. As explained
previously, this equation gives the propagation of rays in the ω→∞ limit. Now,
we assume that the ray limit has been derived and that the stable periodic ray in
the centre of the main stable island is known. We will call this ray γ . The mode
amplitude is now expressed as Φm(s, ξ)= exp(iω

∫ s ds′
c̃s
)Um(s, ξ,ω), using the lo-

cal coordinates (s, ξ) where s is the arc length along the ray, and ξ the transverse
coordinate. For high frequencies ω, the transverse envelope of the mode is assumed
to decay on a scale proportional to 1/

√
ω away from the ray γ . Thus, the distance

to the ray ξ can be assumed to be O(1/
√
ω), and one can approximate Eq. (6.9) by

a parabolic equation of the form:

∂2Vm

∂ν2
−K(s)ν2Vm + 2i

c̃s(s)

∂Vm

∂s
= 0, (6.11)

where ν =√ωξ , Vm =Um/
√
c̃s , and the function K(s) is such that

K(s)= 1

c̃s(s)3

∂2c̃s

∂ξ2

∣
∣
∣
∣
ξ=0
. (6.12)

In the first two terms of the previous expression, one can recognize the equation for
a quantum harmonic oscillator [13]. The appearance of such a form can be under-
stood as follows. The small deviations around the equilibrium position of a classical
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mechanical system can be approximated by an equation for a harmonic oscillator
[2]. Similarly, when one studies a wave equation on small distances, the bottom of
the potential well can often be approximated by a quadratic function, and the wave
equation takes the form of a quantum harmonic oscillator.

The lowest frequency solution to a quantum harmonic oscillator equation is a
Gaussian wavepacket such that

V 0
m =A(s) exp

(

i
Γ (s)

2
ν2

)

, (6.13)

where Γ (s) is an unknown complex-valued function, and A(s) the amplitude of the
wavepacket. This corresponds to a solution of Eq. (6.11) at a fixed s, i.e. at a fixed
position on the ray. It is possible then to view the transverse variation of the mode
along the ray as resulting from the propagation of the Gaussian wavepacket along
the ray. Its width will thus be related to the properties of the rays near to the stable
periodic ray γ . The evolution of the width of this wavepacket can be written in the
form of a Hamiltonian system by a simple change of variable Γ (s) = p(s)/z(s)
with p(s)= c̃−1

s dz(s)/ds. This Hamiltonian system is thus

dz

dτ
= c̃2

s p, (6.14)

dp

dτ
=−c̃2

sKz, (6.15)

where the (time-dependent) Hamiltonian function is

H0(p, z, τ )= c̃2
s

p2

2
+ c̃2

sK
z2

2
, (6.16)

τ being the time coordinate. Since these equations are periodic in time, it is possible
to transform this evolution into a map defined by a so-called monodromy matrixM :

[

z(τ + Tγ )
p(τ + Tγ )

]

=M
[

z(τ )

p(τ)

]

. (6.17)

The eigenvalues exp(±iα) and eigenvectors v± of M will hence fully describe the
evolution of the wavepacket along the ray. Other solutions of Eq. (6.11) will be
proportional to Hermite polynomials as

V �m(s, ν)=
(
i√
2

)�(
z̄

z

)�/2

H�
(√

Im($)ν
)exp(i $2 ν

2)√
z

, (6.18)

with H� the Hermite polynomials of order �. Finally, we can write the island mode
solutions of Eq. (6.9) as

Φ�m(s, ν)=
√

c̃sV
�
m(s, ν) exp

(

iω

∫ s ds′

c̃s

)

. (6.19)
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Propagation of the wavepacket along the stable ray corresponds to the accumulation
of a dynamical phase. For the mode to be univalued, this phase must be a multiple
of 2π after a period of propagation, and hence it can be written that

ωn,�,m

∮

γ

ds

c̃s
− α + 2πNr

2
− (α + 2πNr)�= 2πn+ π, (6.20)

where the so-called stability angle α is obtained from the eigenvalues of the mon-
odromy matrix M , Nr is the winding number of the eigenvector v, and the last
term on the right-hand side is the phase acquired from the reflection of the acoustic
waves on the boundary. By re-ordering the terms of the last formula, one obtains an
expression for mode frequencies in the asymptotic regime:

ωn,�,m = 1
∮

γ
ds
c̃s

[

2π

(

n+ 1

2

)

+
(

�+ 1

2

)

(2πNr + α)
]

. (6.21)

This equation is valid asymptotically for n large and �� n. The quantum numbers
n and � correspond to the number of nodes in the directions parallel and transverse
to the stable periodic ray γ . The island mode frequencies ωn,�,m are thus essentially
described by two quantities,

δn(m)= 2π
∮

γ
ds
c̃s

and δ�(m)= 2πNr + α
∮

γ
ds
c̃s

. (6.22)

The quantities δn and δ� probe the sound velocity and its transverse derivatives along
the path of the periodic ray γ . It is also possible to derive an expression for the
frequency difference δm = ωn,�,m −ωn,�,0 that is equivalent to a rotational splitting
in the co-rotating frame. Under the assumptions that the location of the stable ray
does not change with m/ω and that n is large, we obtain

δm(�= 0)�
[
m2

ω2
π

∮

γ
cs
d2 ds

(
∮

γ
ds
cs
)2

]

n. (6.23)

This m2 dependence of the splitting is to be contrasted with the usual first-order
perturbation theory proportional to m, which comes from the effect of the Coriolis
force [16]. The m2 dependence is expected to be dominant in the high-frequency
regime, where the Coriolis force is negligible. Indeed, the numerical computations
that take into account the Coriolis force show the same dependence at high frequen-
cies [28, 31].

6.4.3 Comparison with Numerical Modes

The result of comparison between the asymptotic formula (6.21) and the numeri-
cally computed modes of polytropic stellar models is shown in Fig. 6.8. These nu-
merical computations take into account the Coriolis force and perturbations of the
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Fig. 6.8 Comparison of frequency spacings δn and δ�, computed from numerical simula-
tions and semi-analytical formulae for different values of the rotation rate Ω/ΩK , where
ΩK = (GM/R3

eq)
1/2. The frequency spacings are normalized by ωp = (GM/R3

p)
1/2 with Rp the

polar radius. Circles: δn; triangles: δ�; red: semi-analytical results of Eq. (6.22); blue: numerical
results. Numerical results correspond to different sets of regularities between modes of consecu-
tive quantum numbers n or � in the set n ∈ [42,51], � ∈ {0,1} for m= 0; and n ∈ [42,51], �= 0;
n ∈ {42,44,46,48,50}, �= 1 for m ∈ {−1,1}. Left panel: regularities for m= 0; right panel: for
|m| = 1 (from [28])

gravitational potential. The agreement is good at high rotation rates and degrades
at low rotation rates, where the theory is not supposed to apply. Additionally, for
m= 0, the agreement degrades around Ω/ΩK ≈ 0.26. Indeed, at this rotation rate
there is a bifurcation of the central periodic ray of the stable island, which splits into
two separate rays. It is known that in this case, one should refine the theory in order
to properly take into account this phenomenon [28]. By comparison with numerical
results, we also see that the behaviour of δm expressed in Eq. (6.23) is indeed valid
for rotation rates higher than Ω/ΩK � 0.4.

The theory developed in Sect. 6.4.2 also enables us to construct the amplitude
distribution of the modes in terms of transverse Hermite polynomials modulated
with the longitudinal coordinate. The result of comparison of the asymptotic ampli-
tude distribution with the numerically computed modes is shown in Fig. 6.9. Again,
the agreement is good, showing that the method used gives access not only to the
mode frequencies, but also to the amplitude distribution with good accuracy.

6.5 Chaotic Spectrum

In the preceding section, we presented asymptotic formulae enabling us to pre-
dict the frequencies and amplitudes of the 2-period island modes, which should
be among the most visible ones. However, we noticed in Sect. 6.3.3 that modes as-
sociated with chaotic phase space zone also presented high disk-averaging factors
(see Fig. 6.6) and thus should be present in observed spectra. It is known from re-
sults in quantum chaos that no simple asymptotic formula can be constructed for
chaotic modes. However, one can expect several specific properties. As concerns
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Fig. 6.9 Normalized amplitude distributions (real part of Φ�m) on the equator as functions of posi-
tion r/Req (where Req is the equatorial radius of the stellar model) for semi-analytical (red dashed
line) and numerical (blue continuous line) modes. Modes are for Ω/ΩK � 0.460. The modes
shown correspond to n = 50, m = 0 and � = 0 (left), � = 1 (middle), � = 2 (right). The first two
modes are the same as in Fig. 6.7

Fig. 6.10 Integrated spacing
distribution N(Δ) of chaotic
modes for m= 0 and
Ω/ΩK = 0.59 (full line);
dashed line: Random Matrix
Theory results; dotted line:
Poisson distribution from
uncorrelated spectra (from
[20])

the spectrum, there is a conjecture [10] which has been verified on many exam-
ples. It states that statistical properties of spectra corresponding to chaotic modes
should be the same as the ones predicted by Random Matrix Theory. The latter is a
theory without adjustable parameter [9] which approximates Hamiltonian matrices
by large random matrices with Gaussian-distributed entries. In Fig. 6.10 we show
one statistical quantity that can be extracted from spectra, the integrated nearest-
neighbour spacing distribution. The numerical data from the chaotic subspectrum
of a rapidly rotating star is close to the Random Matrix result and far from the re-
sult for uncorrelated spectra. The conjecture is thus verified by the chaotic subset
of the numerical acoustic stellar modes. As concerns the amplitude distribution, one
expects these modes to be ergodic asymptotically on the chaotic phase space zone.
More precisely, they are conjectured [6] as behaving as superposition of plane waves
with wave vectors in random directions. Since the centre of the star is located in the
chaotic phase space zone for high rotation rates, chaotic modes should be the modes
which give information about the stellar core.
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6.6 Conclusion

In this lecture we have reviewed the recent theoretical results on the p-mode oscil-
lation spectrum of rapidly rotating stars. We think that there are strong arguments
supporting the view that the tools of dynamical systems and quantum chaos are ad-
equate to obtain insights on this problem. Indeed, the asymptotic structure of the
p-mode spectrum for high rotation rates is fundamentally different from the non-
rotating case, and this can be understood from acoustic ray theory. The dynamics of
acoustic rays shows a transition from an integrable to a mixed system when the rota-
tion rate increases. Thus, for a sufficiently large rotation rate, the spectrum should be
divided into well-defined regular and irregular parts. Since these modes have strik-
ing differences in their amplitude distributions, it is expected from disk-averaging
that only a fraction of them should be visible in observations. The most visible
regular modes are the so-called island modes. Their asymptotic frequencies and
amplitude distributions are obtained from ray theory in the form of semi-analytical
formulae. In particular, the formula for frequency spacings relates regularities in the
spectrum to internal properties of the star. On the other hand, for the irregular sub-
set, only the statistical properties of chaotic modes can be predicted. These results
were all validated by comparison with numerical modes of polytropic stellar models
at different rotation rates.

From the first results of CoRoT, some regularity seems to be detected in rapidly
rotating δ Scuti stars [14, 24]. Identification of the regular spectra should lead to
better understanding of the stellar interior. This calls for more work to connect the
present theory with observations [23]. In particular, observations of chaotic modes
hold great promise since they would allow us to probe the stellar core.

The present theory could be extended in different ways. Indeed, though the re-
sults for polytropic stellar models are expected to be generic, applications of our
methods to more refined or “realistic” stellar models is desirable. Some efforts have
already been taken in this direction, see [31]. Also, the present ray formalism cannot
treat discontinuities in a proper manner, but this could be incorporated in the for-
malism following the method of [8]. An important extension would concern other
types of modes. Indeed, gravity modes were recently shown to be related to a ray
theory [5], but the fundamental differences between the dynamics of acoustic and
gravity rays require further study before applying the ideas reviewed here.
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Chapter 7
Low-Frequency Oscillations in Rotating Stars

Umin Lee

Abstract We review the properties of low-frequency oscillations in uniformly ro-
tating stars. Rotation not only yields a new class of modes, like inertial modes and
r-modes, but also significantly modifies the properties of low-frequency g-modes.
For slow rotation rates where |Ω/ω| � 1, we can treat the rotation frequency Ω as
a small parameter for perturbation analysis, but for |Ω/ω| �� 1, we have to prop-
erly solve the oscillation equation given as a set of partial differential equations,
taking account of the effects of the Coriolis force and the centrifugal force, where
ω stands for the oscillation frequency observed in the corotating frame of the star.
The Coriolis force couples modes having different spherical harmonic degrees l,
and the centrifugal force deforms the equilibrium structure. Rapid rotation affects
the stability and the frequency of low-frequency modes. We discuss perturbation
theory, the traditional approximation, linear mode coupling, series expansion meth-
ods, and weakly nonlinear calculations, which are applied to low-frequency modes
in rotating stars.

7.1 Introduction

There are classes of stars in which rotation has significant effects on the oscillations.
In Jupiter, for example, low-frequency periodic phenomena, which are susceptible to
rapid rotation, were reported by [14, 41]. Besides low-frequency phenomena, high-
frequency oscillations in Jupiter were once claimed to have been detected (see [42]).
Jovian p-modes were calculated, taking account of the effects of the rapid rotation
on the modes and the equations of state appropriate for the planet (see, e.g., [27, 55]).
For rapidly rotating neutron stars, it was suggested that r-modes could be excited by
the instability associated with gravitational wave radiation [1, 20], which prompted
numerous theoretical studies concerning the instability and frequency spectrum of
the r-modes (e.g., [7, 38, 40, 60]). For slowly pulsating B (SPB) stars, many low-
frequency nonradial modes have been detected (e.g., [56–58]), which are believed to
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be excited by the opacity bump mechanism associated with iron metal lines [18, 19,
21]. Low-frequency g-modes are likely influenced by rotation since the frequency
of the modes of interest can be comparable to or smaller than the rotation frequency.
The effects of rotation on such low-frequency modes have to be properly accounted
for to reliably determine the frequency spectrum and stability.

Oscillations of stars are governed by a set of linear partial differential equations
(LPDEs), which is derived by linearizing the basic equations for the fluid dynamics.
For normal mode analysis, we assume that the time dependence of the perturba-
tions is given by the factor eiωt , where ω denotes the oscillation frequency in the
corotating frame and is treated as the eigenvalue of the differential equations with
appropriate boundary conditions imposed at the center and the surface of the stars.
For nonrotating stars, the angular dependence of the perturbations can be repre-
sented by using a single spherical harmonic function Yml (θ,φ), and this separation
of variables makes it possible to reduce the set of LPDEs to a set of linear ordi-
nary differential equations (LODEs), which is rather easy to handle analytically and
numerically.

For rotating stars, however, the separation of variables between the radial coor-
dinate r and the angular coordinates (θ,φ) is not possible in general because of the
Coriolis term and of the rotational deformation of the equilibrium structure, and we
have either to directly solve the set of LPDEs or to employ series expansion for the
perturbations using spherical harmonic functions to reduce the set of LPDEs to a set
of LODEs. To obtain reliable eigenvalues and eigenfunctions, we have to prepare
a good number of mesh points in the angular direction for the LPDEs or to use a
long series expansion, which inevitably demands a significant amount of numerical
resources for calculation.

Besides the difficulty associated with the separation of variables for the oscilla-
tions, the equilibrium structure of a rotating star is deformed by centrifugal force,
and it is not an easy task to construct rotationally deformed models for evolving
stars. We note that it is rather easy to calculate rotationally deformed polytropes,
for which modal analyses could be carried out by solving the oscillation equations
given as a set of LPDEs. For slow rotation, the effects of centrifugal force appear
as a second-order term of the rotation rate Ω , but, as Ω increases, we need higher-
order terms to correctly represent both the deformed equilibrium structure and the
oscillations, which makes the analysis more difficult.

7.2 Perturbation Analysis

For slow rotation, we can apply a perturbation method to oscillations in rotating stars
regarding the rotation frequencyΩ as a small parameter. The effects of the Coriolis
force and the centrifugal force on the oscillation may be parameterized effectively
by the quantities mΩ/ω and Ω̄2 = Ω2/σ 2

0 , where σ 2
0 = GM/R3, M and R are

the mass and radius of the star, and G is the gravitational constant. The oscillation
frequency σ in an inertial frame is related to ω by

σ = ω−mΩ, (7.1)
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where m is the azimuthal order (wavenumber) of the mode, and we have assumed
that the time and azimuthal dependence of the oscillations is given by the factor
ei(mφ+ωt). For slow rotation, we may expand the eigenfrequency (and the eigen-
function) of a mode in terms of Ω̄ :

ω̄ = ω̄0 +D1(mΩ̄/ω̄0)+D2(mΩ̄/ω̄0)
2 +E2Ω̄

2 + · · ·
= ω̄0 +mC1Ω̄ +C2Ω̄

2 + · · · , (7.2)

where ω̄= ω/σ0, C1 =D1/ω̄0, and C2 =D2(m/ω̄0)
2+E2, and the coefficients C1

and C2 are tabulated, for example, in [45] for low l and low radial order adiabatic
p-, f -, and g-modes of a polytropic model for uniform rotation. The first-order term
comes from the Coriolis force, the effects of which differ between the prograde
and retrograde modes as indicated by the factor m, where in our convention the
modes with mω < 0 (mω > 0) are prograde (retrograde) modes. The second-order
terms include both the Coriolis force and the centrifugal force, and the effects on the
frequency are the same for both the prograde and retrograde modes. Note that the
expansion to third order in Ω̄ was discussed by [49]. Note also that the coefficient
C1 for an adiabatic mode is given by (e.g., [54])

C1 =
∫ R

0 [2ξ r/ξh + 1](ξh)2ρr2 dr
∫ R

0 [(ξ r/ξh)2 + l(l + 1)](ξh)2ρr2 dr
, (7.3)

where ξ r and ξh denote the radial and horizontal components of the displacement
vector ξ of the mode in the nonrotating star, and for low-frequency modes, we have
C1 ∼ [l(l + 1)]−1 since |ξ r/ξh| � 1.

Equation (7.2) may suggest that the centrifugal force is essential for high-
frequency p-modes of (Ω̄/ω̄)2 � Ω̄2 and that the Coriolis force is essential for
low-frequency g-modes of (Ω̄/ω̄)2 � Ω̄2. For Ω̄ ∼ 1 or |Ω̄/ω̄| � 1, we cannot
regard Ω̄ as a small parameter anymore.

Inertial modes are rotationally induced modes, and the Coriolis force is the restor-
ing force for them. For inertial modes in isentropic stars for which the Brunt–Väisälä
frequency N vanishes throughout the interior, we can expand the oscillation fre-
quency ω̄ as

ω̄= κ0Ω̄
(

1+ κ2Ω̄
2 + · · · ), (7.4)

where the coefficient κ2 contains the contributions from both the Coriolis and cen-
trifugal forces. The coefficients κ0 and κ2 were calculated, e.g., by [40, 60] for poly-
tropes. For r-modes of order m and l′, which are generated by the conservation of
the radial component of the total vorticity measured in an inertial frame (e.g., [54])
and form a subclass of inertial modes, we have the analytical expression for κ0:

κ0 = 2m/
[

l′
(

l′ + 1
)]

, (7.5)

where l′ = |m| + 2j − 1 for even modes and l′ = |m| + 2(j − 1) for odd modes
with j being a positive integer. For r-modes in isentropic stars, only the nodeless
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odd r-mode of l′ = |m| exists (e.g., [60]). For stars with a radiative region, however,
there exist both even and odd r-modes, and we have the nodeless fundamental r-
mode and its overtones for a given l′ ≥ |m| (e.g., [61]). It is interesting to note
that although expansion (7.4) is still applicable to the r-modes in radiative stars, it
is not to inertial modes, for which expansion (7.2) should be used. Inertial modes
in radiative stars recover their mode character only when the rotation frequency
dominates the Brunt–Väisälä frequency N .

For low-frequency modes of |Ω̄/ω̄|� 1, we cannot treat the rotation frequency
Ω as a small parameter, a situation which is likely to happen for g-modes in rapidly
rotating stars. Low-frequency g-modes excited in SPB stars are such an example,
and the properties of the modes are significantly modified by the effects of rotation.

7.3 Low-Frequency Oscillations

For low-frequency oscillations of |Ω/ω| � 1, we need to solve the problem using
nonperturbative methods. In this section, we ignore the effects of the centrifugal
force on the oscillations and neglect the rotational deformation of the stars, that is,
we assume that the star is spherically symmetric and the physical quantities in the
equilibrium depend only on r . The linearized basic equations for adiabatic oscilla-
tions in uniformly rotating stars may be given, in the Cowling approximation, by

−ρω2ξ r − 2iρωΩ sin θξφ =−∂p
′

∂r
− ρ′ ∂Φ

∂r
, (7.6)

−ρω2ξθ − 2iρωΩ cos θξφ =−1

r

∂p′

∂θ
, (7.7)

−ρω2ξφ + 2iρωΩ cos θξθ + 2iρωΩ sin θξ r =− 1

r sin θ

∂p′

∂φ
, (7.8)

ρ′ + 1

r2

∂

∂r

(

r2ρξr
)+ 1

r sin θ

∂

∂θ

(

sin θρξθ
)+ 1

r sin θ

∂

∂φ

(

ρξφ
)= 0, (7.9)

and

p′

p
= Γ1

(
ρ′

ρ
+Aξr

)

, (7.10)

where ξ = (ξ r , ξ θ , ξφ) is the displacement vector, and p′ and ρ′ are the Eulerian
perturbations of the pressure and density, respectively, and

Γ1 =
(
∂ lnp

∂ lnρ

)

ad
, A= d lnρ

dr
− 1

Γ1

d lnp

dr
. (7.11)

Using the horizontal components (7.7) and (7.8), we obtain

ξθ = 1

rω2

1

1− ν2μ2

(
∂

∂θ
− iνμ

sin θ

∂

∂φ

)
p′

ρ
+ ν

2μ sin θ

1− ν2μ2
ξ r , (7.12)
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ξφ = 1

rω2

1

1− ν2μ2

(

iνμ
∂

∂θ
+ 1

sin θ

∂

∂φ

)
p′

ρ
+ iν sin θ

1− ν2μ2
ξ r , (7.13)

where μ= cos θ , ν = 2Ω/ω, and we have assumed that ν2μ2 �= 1. Substituting ξθ

and ξφ into Eqs. (7.6) and (7.9), we obtain after some manipulation

r
∂

∂r

ξ r

r
+

(

3− V
Γ1

)
ξ r

r
+ V
Γ1

p′

ρgr
+ 1

c1ω̄2
Lν

(
p′

ρgr

)

= ∂

∂μ

[
ν2μ(1−μ2)

1− ν2μ2

ξ r

r

]

+ mν

1− ν2μ2

ξ r

r
, (7.14)

r
∂

∂r

p′

ρgr
− (

c1ω̄
2 + rA)ξ

r

r
+ (rA+U − 1)

p′

ρgr

=−c1ω̄
2ν2 1−μ2

1− ν2μ2

ξ r

r
+ ν

1− ν2μ2

[

νμ
(

1−μ2) ∂

∂μ
−m

]
p′

ρgr
, (7.15)

where Lν is the differential operator defined by

Lν ≡ ∂

∂μ

(
1−μ2

1− ν2μ2

∂

∂μ

)

− 1

1− ν2μ2

(
m2

1−μ2
+mν 1+ ν2μ2

1− ν2μ2

)

, (7.16)

and

V =−d lnp

d ln r
, U = d lnMr

d ln r
, Mr =

∫ r

0
4πr2ρ dr, c1 = (r/R)

3

Mr/M
,

(7.17)

and g = GMr/r2. Here, we have assumed that the φ dependence of the perturba-
tions is given by the factor eimφ . For given ν and m, the Hough function Θkm(μ;ν)
is defined as the eigenfunction of the second-order linear differential equation called
Laplace tidal equation (e.g., [39]):

Lν

[

Θkm(μ;ν)
]=−λkm(ν)Θkm(μ;ν), (7.18)

where λkm(ν) is the eigenvalue, and k is an integer used as a modal index (e.g.,
[36]). We may normalize the function Θkm such that

∫ 1

−1
dμΘ∗k′mΘkm = δkk′ , (7.19)

where the asterisk indicates complex conjugation, and δkk′ is the Kronecker delta. It
is convenient to define the function Θ̃km(θ,φ),

Θ̃km(θ,φ)≡Θkm(μ;ν)eimφ/
√

2π, (7.20)

which, as ν→ 0, tends to the spherical harmonic function Ymlk (θ,φ) with λkm→
lk(lk + 1), where lk = |m| + k, and k is a nonnegative integer. When ν = 0, since
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Fig. 7.1 Eigenvalue of Laplace’s tidal equation λkm versus −sgn(m)ν for |m| = 1 and 2, where
sgn(m)≡m/|m| and ν ≡ 2Ω/ω. Solid and dashed lines are for even and odd modes, respectively

Lν=0(Y
m
l )=−l(l + 1)Yml and the terms on the right-hand side of Eqs. (7.14) and

(7.15) vanish, the separation of variables using a single spherical harmonic function
Yml (θ,φ) becomes possible so that ξ r ∝ Yml and p′ ∝ Yml .

Figure 7.1 depicts the eigenvalue λkm as a function of ν for |m| = 1 and 2. For
a given azimuthal wavenumber m, λkm depends on the parameter ν and tends to
lk(lk + 1) with lk = |m| + k as ν→ 0 for k ≥ 0, which corresponds to Θ̃km→ Ymlk
as ν→ 0. The quantity

√
λkm represents a kind of surface wavenumber. Except for

the prograde sectoral modes (k = 0), we have λkm ∝ ν2 as |ν| →∞. The prograde
sectoral modes (associated with λ0m for modes with mω < 0) in rapidly rotating
stars are special modes whose surface wavenumber is lower than the value at ν = 0
and hardly changes with ν, tending to m2 as |ν| →∞ (e.g., [8, 51]). Note that g-
modes belong to λkm with k ≥ 0. On the other hand, r-modes, which are retrograde
modes, belong to λkm with negative k [36]. In the limit as Ω→ 0, we have ω→
2mΩ/l′k(l′k + 1), where l′k = |m|+ |k+1| for negative integer k. Note that λkm→ 0

as ω→ 2mΩ/l′k(l′k + 1). A few examples of the functions Θkm, Θθkm, and Θφkm for
g- and r-modes are given in [36].

7.4 Traditional Approximation

A local analysis of waves in the short-wavelength and low-frequency limits gives a
dispersion relation (e.g., [54])

ω2 ≈ N
2k2
H + (2� · k)2
k2

, (7.21)

whereN denotes the Brunt–Väisälä frequency, k= krer+kθeθ +kφeφ ≡ krer+kH
is the wavenumber vector, k = |k|, and kH = |kH |. Because the waves are nearly in-
compressible so that k · ξ = krξ r + kH · ξH ≈ 0 in this limit, we obtain |ξ r/ξH | ≈
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|kH/kr |, where ξ = ξ rer + ξθeθ + ξφeφ ≡ ξ rer + ξH . If |N2| is much larger
than both ω2 and (2Ω)2, the dispersion relation leads to k2

H/k
2 � 1 and hence

to |kH /kr | � 1. This also means that |ξ r/ξH | � 1 for the incompressible waves.
Since k is almost radial, we may approximate (2� · k)2 ≈ (2Ωrkr)2 in the disper-
sion relation, suggesting that only the radial component of � is important and that
the horizontal component of � can be ignored in determining the frequency ω of
the waves. This approximation is called the traditional approximation.

Many properties of low-frequency oscillations of uniformly rotating stars are
well explained by using the traditional approximation (e.g., [32, 36]; see also [6]),
in which the tangential component −Ω sin θeθ in � = Ω cos θer − Ω sin θeθ is
neglected, corresponding to the neglect of the terms on the right-hand side of
Eqs. (7.14) and (7.15). Under the traditional approximation (and the Cowling ap-
proximation), the separation of variables becomes possible, which is the most fa-
vorable property of the approximation, and the angular dependence of the oscilla-
tions is given by the Hough function Θkm(μ;ν) (e.g., [39]). The components of the
displacement vector ξ(x, t) are then given by

ξ r = ξ r (r)Θ̃km(θ,φ)eiωt , (7.22)

ξθ = 1

rω2

p′(r)
ρ(r)

Θ̃θkm(θ,φ)e
iωt , (7.23)

ξφ = 1

rω2

p′(r)
ρ(r)

iΘ̃φkm(θ,φ)e
iωt , (7.24)

and p′ and ρ′ are given by

p′ = p′(r)Θ̃km(θ,φ)eiωt , (7.25)

ρ′ = ρ′(r)Θ̃km(θ,φ)eiωt , (7.26)

where

Θ̃θkm(θ,φ) =
1

(1− ν2μ2)
√

1−μ2

[

−(1−μ2) d

dμ
+mνμ

]

Θ̃km(θ,φ), (7.27)

Θ̃
φ
km(θ,φ) =

1

(1− ν2μ2)
√

1−μ2

[

−νμ(1−μ2) d

dμ
+m

]

Θ̃km(θ,φ). (7.28)

The radial functions ξ r(r) and p′(r) associated with λkm are obtained by solving the
following LODEs with appropriate boundary conditions at the center and surface of
the star:

r
dz1

dr
=

(
V

Γ1
− 3

)

z1 +
(
λkm

c1ω̄2
− V
Γ1

)

z2, (7.29)

r
dz2

dr
= (

c1ω̄
2 + rA)z1 + (1−U − rA)z2, (7.30)
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where z1 = ξ r(r)/r and z2 = p′(r)/ρgr . Note that replacing λkm with l(l + 1), we
regain the differential equation for adiabatic oscillations of nonrotating stars in the
Cowling approximation.

The inner boundary condition imposed at the stellar center may be obtained by
substituting zj ∝ rβ , V = rA= 0, and U = 3 into Eqs. (7.29) and (7.30). Then, the
regularity condition for the displacement vector at the center given by β ≥−1 leads
to λkm ≥ 2, a condition which is not satisfied by prograde sectoral g-modes of λ0m
with l = −m = 1 and is not always satisfied by r-modes (see Fig. 7.1). Note that
if we calculate oscillation modes using series expansion method discussed below
(without the traditional approximation), we can always find prograde sectoral g-
modes of l = −m = 1 and retrograde r-modes that satisfy the regularity condition
at the stellar center.

The kinetic energy 〈EK 〉, averaged over the period, of a mode associated with
λkm may be given by

〈EK〉 = ω
2

4

∫

ρξ∗ · ξ dV

=
∫
ρgr3

4

[

c1ω̄
2|z1|2 +

(

λkm + ν ∂λkm
∂ν

) |z2|2
c1ω̄2

]

dr, (7.31)

where we have used the normalization given by (7.19), and

∫ 1

−1
dμ

(∣
∣Θθkm

∣
∣2 + ∣

∣Θ
φ
km

∣
∣2
) =

(

λkm + ν ∂λkm
∂ν

)∫ 1

−1
dμ |Θkm|2

= λkm + ν ∂λkm
∂ν

(7.32)

for positive λkm. The expression of the kinetic energy 〈EK 〉 is the same as that given
by [35].

7.5 Linear Mode Coupling

The terms on the right-hand sides of Eqs. (7.14) and (7.15), which are neglected
under the traditional approximation, bring about mode coupling between low-
frequency modes associated with different λkms. Here, we again ignore the effects
of the centrifugal force. Since the functionsΘkm(μ;ν) form a complete set for given
m and ν, we may expand the functions ξ r and p′ in terms of Θ̃km as

ξ r (r, θ,φ, t) = eiωt
∑

k′
ξ rk′(r)Θ̃k′m(θ,φ), (7.33)

p′(r, θ,φ, t) = eiωt
∑

k′
p′k′(r)Θ̃k′m(θ,φ), (7.34)
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and substituting these expansions into Eqs. (7.14) and (7.15), multiplying by Θ̃∗km,
and integrating over sin θ dθ dφ, we obtain

r
dzk1

dr
+

(

3− V
Γ1

)

zk1 +
(
V

Γ1
− λkm

c1ω̄2

)

zk2 =
∑

k′

(∫ 1

−1
dμΘ̃∗kmC (1)Θ̃k′m

)

zk
′

1 ,

(7.35)

r
dzk2

dr
− (

c1ω̄
2 + rA)zk1 + (rA+U − 1)zk2

=−c1ω̄
2
∑

k′

(∫ 1

−1
dμΘ̃∗kmC (3)Θ̃k′m

)

zk
′

1 +
∑

k′

(∫ 1

−1
dμΘ̃∗kmC (2)Θ̃k′m

)

zk
′

2 ,

(7.36)

where

zk1 =
ξ rk (r)

r
, zk2 =

p′k(r)
ρgr

, (7.37)

the operators C (j) are defined as

C (1) = mν

1− ν2μ2
+ ∂

∂μ

ν2μ(1−μ2)

1− ν2μ2
, (7.38)

C (2) = ν
2μ(1−μ2)

1− ν2μ2

∂

∂μ
− mν

1− ν2μ2
, (7.39)

C (3) = ν2 1−μ2

1− ν2μ2
, (7.40)

and the summation in Eqs. (7.35) and (7.36) should be over k′ ≥ 0 for |ν|< 1 and
−∞< k′ <+∞ for |ν| ≥ 1. Note that since C (j)(−μ)= C (j)(μ) for j = 1,2,3,
the integral

∫ 1
−1 dμΘkmC (j)Θk′m vanishes if the parities of the functions Θkm and

Θk′m are different. The terms on the right-hand side of Eqs. (7.35) and (7.36) lead
to the mode coupling between modes associated with different λkms. It may be con-
venient to formally write the set of Eqs. (7.35) and (7.36) as

r
dZ
dr
= AZ, Z=

(

z1
z2

)

, (7.41)

where (z1)k = zk1 and (z2)k = zk2, and A is the coefficient matrix.
If we consider the coupling between two modes associated with λim and λjm, we

can approximate Eqs. (7.35) and (7.36) as

r
dz1

dr
=

[(
V

Γ1
− 3

)

I+C(1)
]

z1 +
(

Λ
c1ω̄2

− V
Γ1

I

)

z2, (7.42)

r
dz2

dr
= [(

c1ω̄
2 + rA)I− c1ω̄

2C(3)
]

z1 +
[

(1− rA−U)I+C(2)
]

z2, (7.43)
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Fig. 7.2 Avoided crossing between two g-modes associated with λ0m and λ2m for |m| = 2, where
the left (m = −2) and right (m = 2) panels are for prograde and retrograde modes, respectively.
The eigenfrequency ω̄ is obtained by solving Eqs. (7.42) and (7.43) for the polytropic model of the
index n= 3 and Γ1 = 5/3

where I is the unit matrix,

z1 =
(

zi1

z
j

1

)

, z2 =
(

zi2

z
j

2

)

, Λ=
(

λim 0
0 λjm

)

, (7.44)

and

C(p) =
(∫ 1

−1
dμΘ∗kmC (p)Θk′m

)

(7.45)

for p = 1,2,3 and k, k′ = i and j .
As an example of mode coupling, we calculate avoided crossings between two

g-modes associated with different λkms. Figure 7.2 plots the eigenfrequency ω̄ of
|m| = 2 g-modes of λ0m and λ2m as a function of Ω̄ computed for the polytropic
model of n = 3 and Γ1 = 5/3, where we have solved Eqs. (7.42) and (7.43) as an
eigenvalue problem for ω̄.

For mode coupling between adiabatic g-modes associated with λim and λjm, for
example, [34] have derived a dispersion relation given by

Di (ω)Dj (ω)= εij , (7.46)

where Di (ω) = tanΨi , Ψi = −
∫ 1

0 ki dx + χ0, x ≡ r/R, χ0 is the phase constant
depending on the structure of the star, ki = x−1√λimN/ω is the wavenumber in
the radial direction for low-frequency g-modes associated with λim, and εij is the
coupling coefficient between the g-modes given by

εij =
(∫ 1

0

dx

x

|λim|1/2Gij cosχi sinχj + |λjm|1/2Gji cosχj sinχi
|λim|1/4|λjm|1/4

)2

, (7.47)
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Fig. 7.3 Coupling coefficient
εij between g-modes of λ0m
and λ2m for |m| = 1, where
we have used the polytropic
model of n= 3 and Γ1 = 5/3

where χi = −
∫ x

0 ki dx + χ0, and Gij is the matrix element that brings about cou-
pling between the modes [34]. Note that since the matrix elementGij is proportional
to the ratio ν = 2Ω/ω, the coupling coefficient εij is proportional to ν2, and εij → 0
as ν→ 0. For given i and j , we may solve Eq. (7.46) for the frequency ω as a func-
tion ofΩ . As an example, the coupling coefficient εij between g-modes of λ0m and
λ2m for |m| = 1 is plotted versus −sgn(m)ν in Fig. 7.3, where χ0 = 0, and the poly-
tropic model of the index n= 3 and Γ1 = 5/3 is used. The coupling coefficient εij
is smaller for prograde modes than for retrograde modes, indicating that retrograde
modes are more strongly influenced by mode coupling than prograde modes.

For frequency resonance at ω � ωi � ωj between two modes associated with
λim and λjm, defining δ = ω−ωi and Δ= ωi −ωj = ω− δ−ωj , we may rewrite
Eq. (7.46) as

Di (ωi + δ)Dj (ωj + δ +Δ)= εij , (7.48)

which leads to

δ =−Δ
2
±

√

Δ2

4
+ εij

(∂Di/∂ω)(∂Dj /∂ω)
, (7.49)

where we have assumed Di (ωi)= 0, Dj (ωj )= 0, |δ| � |ω|, and |Δ| � |ω|. Since
εij > 0, if (∂Di/∂ω)(∂Dj /∂ω) > 0, we have avoided crossing at the resonance,
while if (∂Di/∂ω)(∂Dj /∂ω) < 0, we have instability as |Δ| → 0. If we regard
ω(∂D/∂ω) as the mode energy, we have instability when the energies of the two
modes have different signs at the resonance (e.g., [35]; see also [13]).
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7.6 Series Expansion Method

We now discuss the series expansion method employed to calculate nonradial os-
cillations of uniformly rotating stars. To calculate low-frequency modes in rotating
stars, we sometimes take account of only the Coriolis force, ignoring the effects of
rotational deformation due to the centrifugal force [31, 33]. In this section, however,
we describe the series expansion method that takes into consideration the rotational
deformation of the models. To include the effects of rotational deformation in the
series expansion method, we apply the Chandrasekhar–Milne expansion ([11, 12];
see also [50]) to nonrotating models, which could be a polytrope or a stellar model
computed with a stellar evolution code. The detail of the formulation used to calcu-
late nonadiabatic low-frequency modes in uniformly rotating stars is given in [30].

We employ a coordinate system (a, θ,φ) for a rotationally deformed star, where
the coordinate a is regarded as the mean distance of an equipotential surface mea-
sured from the star center, and it is related to spherical polar coordinates (r, θ,φ)
by

r = a[1+ ε(a, θ)], (7.50)

where

ε = α(a)+ β(a)P2(cos θ) (7.51)

with P2(cos θ) = (3 cos2 θ − 1)/2 being a Legendre polynomial. Assuming ε to
be proportional to Ω2, we calculate the functions α(a) and β(a) by applying the
Chandrasekhar–Milne expansion to the hydrostatic and Poisson equations for the
star [11, 12]. The term α represents the spherical expansion, and β the deformation
of the star due to rotation.

Note that we determine the function ε(a, θ) so that the physical quantity f (r, θ)
in the equilibrium state of a uniformly rotating star depends only on themean radial
distance a, that is, f (r, θ)= f̄ (a). Assuming that f̄ (a)= f0(a) with f0 being the
equilibrium quantity of the nonrotating star, we define a mapping between the struc-
tures of the rotating and nonrotating stars in terms of the mean radius a. Applying
the assumption to the gravitational potential and making use of the Chandrasekhar–
Milne expansion, we can determine the function ε(a, θ).

In the coordinate system (xj )= (xa, xθ , xφ)= (a, θ,φ), the metric tensor gij is
written as

ds2 = gij dxi dxj

= (1+ 2ε)
(

da2 + a2 dθ2 + a2 sin2 θ dφ2)

+ 2a
∂ε

∂a
da2 + 2a

∂ε

∂θ
da dθ +O(

Ω̄4), (7.52)

with which the linearized Euler’s equation, for example, may be given by (e.g., [60])

−ω2δxi +∇i
(
p′

ρ
+Φ ′

)

+Ai p
′

ρ
+ δxjAj 1

ρ
∇ip+ 2iωΩδxj∇jφi = 0, (7.53)
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where the repeated indices imply summation over the indices from 1 to 3, Ai =
∇i lnρ − Γ −1

1 ∇i lnp, (φi) = (0,0,1) is the rotational Killing vector, ∇j is the
covariant derivative with respect to the coordinate xj , ∇jp = ∂p/∂xj , ∇jφk =
∂φk/∂x

j −Γ ljkφl with Γ ljk being the Christoffel symbol, (δxj )= (δxa, δxθ , δxφ)=
(δa, δθ, δφ) is the Lagrangian variation of the coordinates, and δxi = gij δxj . Here,
the last term on the left-hand side of Eq. (7.53) represents the Coriolis term:

δxj∇jφa = −
(

1+ 2ε+ a ∂ε
∂a

)

a sin2 θδxφ +O(

Ω̄4), (7.54)

δxj∇jφθ = −
[

(1+ 2ε) cos θ + ∂ε
∂θ

sin θ

]

a2 sin θδxφ +O(

Ω̄4), (7.55)

δxj∇jφφ = −
(

1+ 2ε+ a ∂ε
∂a

)

a sin2 θδxa

−
[

(1+ 2ε) cos θ + ∂ε
∂θ

sin θ

]

a2 sin θδxθ +O(

Ω̄4). (7.56)

Note that the displacement vector ξ , in the noncoordinate basis, is given by
(ξa, ξ θ , ξφ)= (δa, aδθ, a sin θδφ). Because of the Coriolis term 2iωΩδxj∇jφi that
includes the deformation effects, the oscillation frequency ω̄ will be consistent up to
the third order in Ω̄ , which makes it possible to calculate the oscillation frequency
of r-modes correct to the order of Ω̄3.

Assuming that the equilibrium state of a uniformly rotating star is axisymmetric,
we approximate small amplitude oscillations of the star using a finite series expan-
sion in terms of spherical harmonic functions Yml (θ,φ) with different ls for a given
m. For a given azimuthal wavenumber m, the displacement vector ξ(a, θ,φ, t) is
given by

ξa

a
= eiωt

jmax∑

j=1

Slj (a)Y
m
lj
(θ,φ), (7.57)

ξθ

a
= eiωt

jmax∑

j=1

[

Hlj (a)
∂

∂θ
Ymlj (θ,φ)+ Tl′j (a)

1

sin θ

∂

∂φ
Yl′j (θ,φ)

]

, (7.58)

ξφ

a
= eiωt

jmax∑

j=1

[

Hlj (a)
1

sin θ

∂

∂φ
Ymlj (θ,φ)− Tl′j (a)

∂

∂θ
Yl′j (θ,φ)

]

, (7.59)

and p′ is given by

p′(a, θ,φ, t)= eiωt
jmax∑

j=1

p′lj (a)Y
m
lj
(θ,φ), (7.60)
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where lj = |m|+2(j−1) and l′j = lj +1 for even modes, and lj = |m|+2j−1 and
l′j = lj − 1 for odd modes, where j = 1,2, . . . , jmax, and jmax is the length of the
expansions. Note that the surface angular pattern of p′ is symmetric (antisymmetric)
with respect to the equator for even (odd) modes.

Substituting these expansions into the linearized basic equations, we obtain a
finite set of coupled first-order LODEs for the expansion coefficients Slj (a) and
p′lj (a), which may be formally given, for example, for adiabatic oscillations in the
Cowling approximation, as

a
dY
da
= CY, Y=

(

y1
y2

)

, (7.61)

where

y1 =

⎛

⎜
⎜
⎜
⎝

Sl1/a

Sl2/a
...

Sljmax
/a

⎞

⎟
⎟
⎟
⎠
, y2 =

⎛

⎜
⎜
⎜
⎝

p′l1/ρga
p′l2/ρga
...

p′ljmax
/ρga

⎞

⎟
⎟
⎟
⎠
, (7.62)

and C is the coefficient matrix. For givenm andΩ , we solve the differential equation
(7.61) as an eigenvalue problem of ω by imposing appropriate boundary conditions
at the center and surface of the star. The linear differential equations for nonadiabatic
oscillations as well as the boundary conditions are given in [30]. Since we assume
that the perturbed quantities are proportional to ei(mφ+ωt), we regard modes having
negative ωI as being pulsationally unstable, where ωI ≡ Im(ω) is the imaginary part
of ω. Note that when ωR ≡ Re(ω) > 0, modes associated with negative (positive) m
are prograde (retrograde) modes seen in the co-rotating frame of the star.

If we neglect the rotational deformation and assume that jmax→∞, the differ-
ential equation (7.61) should be equivalent to the differential equation (7.41), and
there should exist a one-to-one correspondence between the vectors Y and Z such
that Z= BY with B being a transformation matrix.

7.7 Stability of g-Modes and r-Modes in Rotating SPB Stars

It is well known that low-frequency g- and r-modes in SPB stars are excited by the
opacity κ mechanism associated with the metal opacity bump located in the temper-
ature region of T ∼ 2×105 K (e.g., [18, 19, 21]; see, e.g., [28, 53] for r-modes). As
an optimal condition for the opacity mechanism of excitation, we may say that the
κ-mechanism is most effective when the thermal-timescale at the Fe opacity bump is
comparable to pulsation periods in the corotating frame (see, e.g., [21]), and for the
instability, this excitation must exceed the total amount of damping occurring in the
interior. In this section we present some results of the stability analysis of SPB stars
obtained by applying the series expansion method to nonadiabatic oscillations of the
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stars. For the stability analysis discussed in this section, we employ the Cowling ap-
proximation, neglecting the Eulerian perturbation of the gravitational potential, and
we ignore the effect of rotational spherical expansion on the oscillation, that is, we
set α = 0 in Eq. (7.51). For the length of the series expansions, we use jmax = 10.
Stellar models used for modal analysis are calculated with a standard stellar evolu-
tion code using the OPAL opacity [23, 24]. No effects of rotation are included in the
stellar evolution calculation (but see, e.g., [58]).

For slow rotation, we can treat Ω̄ as a small parameter to expand the oscilla-
tion frequency ω of a nonadiabatic mode as ω̄(Ω̄) = ω̄0 +mC1Ω̄ + C2Ω̄

2 + · · · ,
where ω0 is the oscillation frequency of the mode for the nonrotating star. Here, the
coefficients C1 and C2 as well as ω0 are complex for the nonadiabatic mode, C1
stands for the Coriolis effects, and C2 for the effects of both the centrifugal and the
Coriolis forces. The real part C1R of C1 for a nonadiabatic mode is approximately
equal to the coefficient C1 given by (7.3) for the corresponding adiabatic mode. We
note that negative (positive) C1I = Im(C1) means that the Coriolis force due to slow
rotation has a destabilizing (stabilizing) effect on retrograde modes with m> 0 and
a stabilizing (destabilizing) effect on prograde modes with m < 0, and that a neg-
ative (positive) C2I means a destabilizing (stabilizing) effect on both prograde and
retrograde modes. For a given m, we obtain the complex coefficients C1 and C2 nu-
merically by computing the eigenfrequency ω of a mode for three different rotation
frequencies, e.g., Ω̄ = 0, 10−3, and −10−3. We have confirmed that the complex
coefficient C1 thus computed is in good agreement with that obtained using the
method by [10]. Examples of the complex coefficients C1 and C2 are given, e.g., in
[2] for 4M� main sequence stars.

We now examine the stability of g- and r-modes in B stars rotating at finite Ω̄ .
Figure 7.4 plots the growth rate η ≡ −ωI/ωR of unstable g- and r-modes of the
4M� ZAMS model versus −sgn(m)ω̄R for Ω̄ = 0.01 and 0.4, where sgn(m) =
m/|m|, and the modes of l = |m| (l = |m| + 1) stand for even (odd) g-modes and
those of l′ = m stand for odd r-modes. For Ω̄ = 0.01, many low l and high radial
order g-modes are found unstable, and the growth rate η as a function of ω̄R is
almost symmetric about the axis of ω̄R = 0. Note also that the unstable g-modes
with (|m|, l)= (1,2) and (2,2) have almost the same complex frequencies. For Ω̄ =
0.4, however, the symmetry of the frequency spectra about the axis ω̄R = 0 is lost,
and a number of low-frequency retrograde g-modes with ω̄R � 0.5 are found stable,
although most of the prograde g-modes remain unstable. Instead of the stabilized
retrograde g-modes, there appear many unstable odd r-modes of l′ = m = 1 and
2 in the frequency region of ω̄R � 0.5. Note that the upper limit of the r-mode
frequency is given by ω̄= 2mΩ̄/[l′(l′ +1)], which is 0.4 and 4/15 for odd r-modes
of l′ =m= 1 and 2 for Ω̄ = 0.4.

Figure 7.5 plots the growth rate η versus −sgn(m)ω̄R for low l unstable g and
r-modes of a slightly evolved 4M� main sequence model, whose effective tem-
perature Teff is lower than that of the ZAMS model. For Ω̄ = 0.01, the frequency
spectra of low l g-modes, the distribution of which is again almost symmetric about
the axis of ω̄R = 0, become dense because of the enhanced Brunt–Väisälä frequency
N in the interior and the number of unstable g-modes has increased markedly com-
pared to that for the ZAMS model. Rapid rotation tends to stabilize the retrograde
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Fig. 7.4 Growth rate η ≡ −ωI/ωR versus −sgn(m)ω̄R for unstable g- and r-modes of the 4M�
ZAMS model of X = 0.7 and Z = 0.02, where the modes of l = |m| (l = |m| + 1) stand
for even (odd) g-modes and those of l′ = m stand for r-modes. The model parameters are
log(L/L�)= 2.371 and log(Teff)= 4.1654. The left and right panels are for the cases of Ω̄ = 0.01
and 0.4, respectively. Modes with m< 0 (m> 0) are prograde (retrograde) modes

Fig. 7.5 Same as Fig. 7.4 but for a slightly evolved 4M� main sequence model, where the model
parameters are log(L/L�)= 2.564, log(Teff)= 4.0836, and Xc = 0.1076. Note that the modes of
l′ =m (l′ =m+ 1) are odd (even) r-modes

g-modes, and, in fact, almost all of the retrograde g modes that are unstable at
Ω̄ = 0.01 are stabilized at Ω̄ = 0.4 for the evolved main sequence model. This
stabilization effect on retrograde g-modes is stronger for main sequence models
with lower effective temperatures. The stabilization of retrograde low l g-modes at
Ω̄ = 0.4 is not complete for the 4M� ZAMS model compared to the stabilization
obtained for the evolved model having lower effective temperature.
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Fig. 7.6 Same as Fig. 7.5 but for the growth rates calculated by using the traditional approximation
applied to nonadiabatic oscillations, where no effects of rotational deformation are included

Applying the traditional approximation to nonadiabatic oscillations (see [52]),
we have carried out a similar stability analysis for the evolved 4M� main se-
quence model. The result of the analysis is given by Fig. 7.6, in which the growth
rate η is plotted versus −sgn(m)ω̄R for low l g- and r-modes for the cases of
Ω̄ = 0.01 and 0.4. Note that no effects of rotational deformation are included under
the traditional approximation. It is interesting to note that for Ω̄ = 0.01, the two
methods of calculation yield quite similar results for the pulsational stability of low
l g-modes. For the case of rapid rotation such as Ω̄ = 0.4, however, there arise ap-
preciable differences between the stability results obtained by the two methods of
calculation. Although the series expansion method indicates that almost all retro-
grade low l g-modes are stable at Ω̄ = 0.4, the traditional approximation suggests
that some of the retrograde g-modes remain unstable. This tendency is also found
for the prograde g-modes, that is, although almost all odd prograde g-modes of l = 2
and 3 are found stable in the series expansion method, many odd prograde g-modes
remain unstable in the traditional approximation. Note that the stability results for
the r-modes are almost the same between the two methods of calculation, except
that no even r-modes of l′ = m + 1 = 3 are found unstable under the traditional
approximation.

The difference in the stability results between the two methods of calculation is
attributable to whether or not the effects of linear mode coupling are accounted for
in the mode calculation. In the nonadiabatic analysis under the traditional approx-
imation, no effects of mode coupling between low-frequency g-modes associated
with different λkms are taken into account. The series expansion method, however,
inevitably includes the coupling effects (e.g., [2]). This mode coupling effect can be
important in determining the stability of modes in rapidly rotating stars. In Fig. 7.7,
τ ≡ w(R)/ ∫ R0 |dw/dr|dr (with w(r) being the work integral) is plotted versus
ω̄R of low-frequency g-modes associated with different λkms computed under the
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Fig. 7.7 τ ≡w(R)/ ∫ R0 |dw/dr|dr with w(r) being the work integral plotted as a function of ω̄R
for low-frequency g-modes associated with different λkms for the evolved 4M� main sequence
model, where the left and right panels are for prograde and retrograde modes, respectively. Nona-
diabatic g-modes are calculated under the traditional approximation

traditional approximation. Here, unstable (stable) modes have positive (negative)
τ , and τ = −1 implies no excitation regions in the interior for the mode. As in-
dicated by the figure, unstable retrograde g-modes of λ0m are in a sea of stable
g-modes with dense frequency spectra associated with λ2m,λ4m, . . . , and it is likely
that the unstable g-modes are stabilized if they are strongly coupled with the stable
g-modes. Almost the same coupling effects occur to unstable odd prograde g-modes
of λ1m, which are stabilized as a result of mode coupling with stable odd g-modes,
as suggested by comparing Figs. 7.5 and 7.6. Although unstable sectoral prograde
g-modes of λ0m are also in a sea of stable g-modes of λkm with k ≥ 2, the stabil-
ity of the sectoral modes is less affected by the coupling since the coupling is not
strong enough, where the strength of the coupling may be estimated by the coupling
coefficient εij defined by Eq. (7.47). As shown by Fig. 7.3 for the polytropic model
and by [2] for stars with a convective core, εij for sectoral prograde modes of λ0m

is smaller than that for retrograde modes and that for nonsectoral prograde modes.
For low-frequency modes observed in rapidly rotating B type stars like SPBe

stars, retrograde g-modes are found to be almost completely stabilized by the
rapid rotation, and prograde g-modes, which remain unstable, show, in an iner-
tial frame, frequency grouping according to the azimuthal wavenumber m, since
σ = ω −mΩ ≈ −mΩ for the rapid rotation [9, 46, 58]. Fitting theoretical model
calculations to observed frequencies, it is possible to obtain the information about
the rotation speed of the oscillating stars (e.g., [9]). Since the stability of r-modes,
which are retrograde modes, is hardly affected by rapid rotation, the r-modes could
be responsible for some of very-long-period pulsations observed in some SPBe
stars.
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7.8 Parametric Instability: Weakly Nonlinear Oscillation

To estimate the amplitudes of low-frequency modes excited in SPB stars, weakly
nonlinear theory of oscillation can be useful. Here, we assume the parametric insta-
bility by nonlinear coupling between three oscillation modes, that is, one unstable
mode (parent mode) and two stable modes (daughter modes), as the mechanism
of the amplitude saturation of the modes. Nonlinear evolution of small-amplitude
oscillation modes in a uniformly rotating star may be modeled by the oscillation
equation with nonlinear terms:

ζ̈ + B(ζ̇ )+C(ζ )= a(2)(ζ , ζ ), (7.63)

where ζ̇ = dζ/dt , ζ̈ = d2ζ/dt2, B(ζ )= 2�× ζ , and C is the differential operator.
Here, a(2)(ζ , ζ ) represents a collection of nonlinear terms of second order in ζ , and
the ith component of a(2) is given by (see, e.g., [48])

a
(2)
i (ζ , ζ )=−

1

ρ
∇j

{

p
[

(Γ1 − 1)Πji +Ξji +Ψ δji
]}− 1

2
ζ kζ l∇k∇l∇iΦ, (7.64)

where ∇j denotes the covariant derivative,Πji = (∇iζ j )∇ · ζ ,Ξji = (∇iζ k)(∇kζ j ),
Ψ = (1/2)Π[(Γ1 − 1)2 + ∂Γ1/∂ lnρ] + (1/2)(Γ1 − 1)Ξ , Π = δijΠji = (∇ · ζ )2,

Ξ = δijΞji = (∇j ζ k)(∇kζ j ), δij is the Kronecker delta, and Φ is the gravitational
potential. Note that we have applied the Cowling approximation, neglecting the Eu-
lerian perturbation of the gravitational potential.

Following [48], we use the eigenvalues ω and eigenfunctions ξ satisfying the
linear oscillation equation given by −ω2ξ + iωB(ξ)+ C(ξ)= 0 to expand the dis-
placement vector ζ (x, t) and its time derivative ζ̇ (x, t) in the nonlinear equation:

[

ζ (x, t)
ζ̇ (x, t)

]

=
∑

A

cA(t)

[

ξA(x)
iωAξA(x)

]

, (7.65)

for which
∑

A(ċA− iωAcA)ξA(x)= 0, where the subscript A stands for a collection
of numbers such as harmonic degree l, azimuthal order m, and the radial order n
used to identify a linear mode. Substituting expansion (7.65) into the left-hand side
of Eq. (7.63), substituting the expansion ζ (x, t) =∑

B c
∗
B(t)ξ

∗
B(x) into a(2)(ζ , ζ ),

making a scaler product between ξ∗A and Eq. (7.63), and integrating over the volume
of the star, we obtain after some manipulation

˙̂cA =−iωA
∑

B,C

(
κ∗ABC
εA

)

ĉ∗B(t)ĉ∗C(t)e−iΔωt , (7.66)

where ĉA(t)= cA(t) exp(−iωAt), cA(t)= 〈ξA,ωAζ (t)− iζ̇ (t)− iB(ζ (t))〉/bA with
bA = 2ωA〈ξA, ξA〉 − 〈ξA, iB(ξA)〉, κABC = 〈ξ∗A,a(2)(ξB, ξC)〉, εA = ωAbA, and
Δω = ωA + ωB + ωC , where 〈ξA, ξB〉 =

∫

d3xρ(x)ξ∗A(x) · ξB(x), and we have
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used a modified orthogonal relation given by 〈ξA, iB(ξB)〉− (ωA+ωB)〈ξAξB〉 = 0
for A �= B .

For nonlinear mode coupling between three modes A, B , and C, we obtain

˙̂cA =−γAĉA − iωAη
∗
ABCĉ

∗
B(t)ĉ

∗
C(t)e

−iΔωt , (7.67)

and two similar equations for ˙̂cB and ˙̂cC , where we have included the effects of
linear destabilization (γ < 0) and stabilization (γ > 0) of the modes, and we have
normalized the eigenfunctions ξA, ξB , and ξC such that εA = εB = εC =GM2/R,
which leads to κABC/εA = κBCA/εB = κCAB/εC ≡ ηABC/2. In the following, we
regard mode A as the parent mode and modes B and C as the daughter modes.

Parametric instability between three modes occurs when the amplitude of the
parent mode, |cA|, exceeds the critical amplitude given by (e.g., [3, 17])

|cA:c|2 = 1

|ηABC |2QBQC
[

1+
(

Δω

γB + γC
)2]

, (7.68)

where Qj =−ωj/γj . The equilibrium amplitude of the parent mode is then given
by

|cA:e|2 = 1

|ηABC |2QBQC
[

1+
(
Δω

Δγ

)2]

, (7.69)

and those of the daughter modes by |cB:e|2 = |cA:e|2QB/QA, |cC:e|2 = |cA:e|2QC/
QA, whereΔγ = γA+γB+γC . Here, we have assumed thatQBQC > 0,QCQA >
0, and QAQB > 0, that is, the signs of ωB and ωC are the same but are different
from that of ωA, because the parent mode A is assumed unstable (γA < 0) and
the daughter modes B and C stable (γB > 0 and γC > 0). Since ωB and ωC have
the same sign, in order to obtain a resonant coupling satisfying Δω ∼ 0, we need
|ωB | � |ωA| and |ωC | � |ωA|. We use the condition Δγ > 0 as the criteria for an
effectively stable equilibrium state of three-mode coupling (e.g., [3, 59]).

One of the selection rules giving nonzero coupling coefficient ηABC �= 0 is

mA +mB +mC = 0, (7.70)

and another selection rule may be simply stated that the coupling coefficient ηABC is
nonzero only when the mode triad is composed of three even modes or of one even
mode and two odd modes (e.g., [48]). For mA < 0, for example, we have two cases
because of the selection rule (7.70), that is, both mB and mC are positive or one of
mB and mC is negative so that mBmC < 0. In the former case, if the parent mode
is a prograde (retrograde) mode, the two daughter modes are prograde (retrograde)
modes. In the latter case, however, if the parent mode is a prograde mode having
ωA > 0, the daughter mode with m < 0 is a retrograde mode since ωB < 0 and
ωC < 0. On the other hand, if the parent mode is a retrograde mode having ωA < 0,
the daughter mode with m< 0 is a prograde mode since ωB > 0 and ωC > 0.

To evaluate the coupling coefficient ηABC , we use the eigenfunctions ξA and the
eigenfrequencies ωA computed under the traditional approximation and the Cowling
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Fig. 7.8 Amplitudes |δLrad/Lrad| of unstable parent modes of a 4M� main sequence model as
a function of ω̄A for Ω̄ = 0.01 (left panel) and Ω̄ = 0.2 (right panel), where the red, blue, cyan
dots and black open circle stand for the parent modes of (lA,mA) = (1,−1), (2,−1), (2,−2),
and (3,−2), respectively. For mA < 0, prograde (retrograde) modes have positive (negative) ω̄A

approximation for adiabatic modes, and the linear damping and growth rates γ are
obtained by nonadiabatic mode calculation, where we have employed the method
of calculation given by [52] for both adiabatic and nonadiabatic modes. The dis-
placement vector ξ in the traditional approximation is given by Eqs. (7.22) to (7.24)
for adiabatic modes. The angular dependence Θkm(μ;ν) is given by the solution
to the Laplace tidal equation (7.18), and we have carried out numerical evaluation
of integrals like

∫

ΘkAmAΘkBmBΘkCmC dμ for the coupling coefficient ηABC . The
details of the method of calculation for the coupling coefficient under the traditional
approximation are given in [29].

For a given unstable parent mode A, there are numerous possible combinations
of a pair of stable daughter modes B and C. Among the combinations, we choose
the one that gives the smallest critical amplitude |cA:c| for the parent mode A. Since
we can only prepare a limited set of daughter modes to calculate |cA:c|, the critical
amplitude thus determined should be regarded as an upper limit for the parent mode.

An example of amplitude calculations carried out for low-frequency unstable
modes of a 4M� main sequence model with log(Teff) = 4.142 and log(L/L�) =
2.470 and with the initial abundance (X,Z)= (0.7,0.02) is given in Fig. 7.8, where
the amplitude |δLrad/Lrad| of the parent (unstable) g- and r-modes is plotted ver-
sus ω̄R for the cases of Ω̄ = 0.01 and 0.2. Here, we use a set of daughter (stable)
modes having |m| = 0 to |m| = 5, and l = |m| (even modes) and l = |m| + 1 (odd
modes) in the frequency interval 0.05≤ ω̄ ≤ 2, where we have also included stable
r-modes in the set for the case of Ω̄ = 0.2. As shown by the figure, the distribution
of the amplitudes as a function of ω̄A for Ω̄ = 0.01 is almost symmetric about the
axis of ω̄A = 0, although the deviation from symmetry is already appreciable. Rapid
rotation significantly modifies the amplitude distribution of the parent modes. For
Ω̄ = 0.2, the symmetry of the distribution about ω̄A = 0 is lost, and there appear,
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on the retrograde side, almost vertical sequences of points for the parent r-modes,
which have very small amplitudes. For both of the cases, the maximum amplitude is
of the order of 10−4, which may be consistent with observed low-amplitude modes
raging from ∼0.1 mmag to ∼1 mmag (e.g., [5, 15, 22, 43]). Although the am-
plitudes determined by the parametric instability may depend on the evolutionary
stages of the stars, considering that the amplitude we obtain should be regarded as
an upper limit for the parent mode, the maximum amplitudes we obtain may be too
small to explain observed high-amplitude modes. For observed amplitudes exceed-
ing ∼1 mmag, we have to look for possibilities other than the parametric instability
to provide amplitude saturation mechanisms which would allow the larger satura-
tion amplitudes. For example, nonlinear couplings between a parent mode and many
pairs of daughter modes, and between a daughter mode, which may be parametri-
cally excited, and granddaughter modes (e.g., [26]) could be among such possibil-
ities. It is also necessary to lift the traditional approximation in order to correctly
evaluate the growth and damping rates γ of low-frequency modes and the coupling
coefficient ηABC between the modes.

7.9 Conclusion

We have reviewed the properties of low-frequency oscillations in uniformly rotat-
ing stars. The methods of analysis for the low-frequency modes discussed include
the perturbation analysis for slow rotation, traditional approximation, and series ex-
pansion method. We also discussed linear mode coupling between low-frequency
modes under the traditional approximation and suggested that the mode coupling
can be important in determining the pulsational stability of the modes. We presented
some results of the stability analysis of low-frequency g- and r-modes in rotating
SPB stars obtained by the series expansion method. We also suggested that the weak
nonlinear theory of oscillation applied to low-frequency modes in SPB stars can be
useful in determining their amplitudes, e.g., by the parametric instability between
three small amplitude modes.

Because of the Coriolis force and the centrifugal force in rotating stars, we can
expect neither the separation of variables for the oscillations nor spherical symmetry
for the equilibrium structure, which makes it difficult to solve oscillation problems.
We have shown that one can use the series expansion method to investigate the fre-
quency spectrum and stability of low-frequency modes as in [30], who employed the
Chandrasekhar–Milne expansion to calculate the rotational deformation making use
of the equilibrium structure of the nonrotating star. Many attempts have also been
made to carry out two-dimensional calculation for the oscillations of rotating stars
(e.g., [4, 16, 25, 37, 44]; see also [47]), where the differential equations for the os-
cillations and equilibrium models are solved as sets of partial differential equations.
The series expansion method is flexible enough to be applied to nonadiabatic os-
cillations of stars and can be less demanding numerically than the two-dimensional
calculations mentioned above. But, when the advance of astero-seismological ob-
servations requires a good precision in theoretical oscillation calculations, we think
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that two-dimensional calculation will be found to have advantages in the studies of
oscillations in rotating stars.

References

1. Andersson, N.: A new class of unstable modes of rotating relativistic stars. Astrophys. J. 502,
708 (1998)

2. Aprilia, Lee, U., Saio, H.: Stability of g modes in rotating B-type stars. Mon. Not. R. Astron.
Soc. 412, 2265–2276 (2011)

3. Arras, P., Flanagan, E.E., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., Wasserman, I.: Sat-
uration of the r-mode instability. Astrophys. J. 591, 1129–1151 (2003)

4. Ballot, J., Lignières, F., Reese, D.R., Rieutord, M.: Gravity modes in rapidly rotating stars.
Limits of perturbative methods. Astron. Astrophys. 518, A30 (2010)

5. Balona, L.A., Pigulski, A., Cat, P.D., Handler, G., Gutiérrez-Soto, J., Engelbrecht, C.A., Fres-
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Chapter 8
Prospects for Asteroseismology of Rapidly
Rotating B-Type Stars

Hideyuki Saio

Abstract In rapidly rotating stars, Coriolis forces and centrifugal deformations
modify the properties of oscillations; the Coriolis force is important for low-
frequency modes, while the centrifugal deformation affects mainly p-modes. Here,
we discuss properties of g- and r-mode oscillations in rotating stars. Predicted fre-
quency spectra of high-order g-modes (and r-modes) excited in rapidly rotating stars
show frequency groupings associated with azimuthal order m. We compare such
properties with observations in rapidly rotating Be stars and discuss what is learnt
from such comparisons.

8.1 Oscillations in Main-Sequence B-Stars

Thanks to OPAL and OP opacity tables [5, 27], we now understand that radial
and nonradial oscillations found in main-sequence B-stars; i.e., β Cephei and SPB
(Slowly pulsating B) stars, are excited by the kappa-mechanism associated with the
Fe opacity bump at T ∼ 2× 105 K [21, 23, 28, 36]. Low-order p- and g-modes are
excited in β Cephei stars, while high-order g-modes are excited in SPB stars. Fig-
ure 8.1 shows their positions in the HR diagram and predicted instability regions;
solid and dotted lines are for models without and with core overshooting, respec-
tively. The instability regions bounded by solid lines are roughly consistent with β
Cephei (inverted triangles) and SPB (triangles) stars, which are mostly slow rotators.

Stellar oscillations give us useful information on the stellar interior that is hard to
obtain by other means. For β Cephei stars having low-order p- and g-modes, mode
identifications are less ambiguous, so that detailed asteroseismic studies are pos-
sible. Comparing observed frequencies with theoretical ones yields best estimates
of physical parameters as well as the extent of core-overshooting for each star. In
addition, rotational m-splittings of p- and g-modes, which have different depth sen-
sitivity, can be used to measure the strength of differential rotation in the stellar
interior. Such asteroseismic analyses have been done for some β Cephei stars, e.g.,
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Fig. 8.1 Positions of rapidly rotating Be stars (filled circles) in the HR diagram are shown along
with the well-known B-type main-sequence variables SPB (triangles) and β Cep stars (inverted tri-
angles). Big filled circles indicate the Be stars with nonradial pulsations detected by space photom-
etry from the MOST and CoRoT satellites. Parameters of Be stars are taken mainly from [22, 53]
and those of SPB stars from [15, 39]. Also shown are theoretical instability boundaries for p- and
g-modes. Solid lines for evolutionary tracks and instability boundaries are from models without
core overshooting, while dotted lines come from models with a core overshooting of 0.2Hp (Hp =
pressure scale height). Theoretical models were obtained using a standard chemical composition
of (X,Z)= (0.70,0.02) with OPAL opacity tables [27]

ν Eri [4, 13, 20, 47], θ Oph [9, 34], HD 129929 [18], β CMa [35], 12 Lac [16], and
δ Cet [1]. Although results are still somewhat controversial, they seem to indicate
that the extent of core overshooting in β Cephei stars ranges around 0.1–0.3Hp , and
the core-to-envelope ratios of rotation rates are approximately 3–5.

In contrast to the cases of β Cephei stars, detailed seismic analysis for SPB stars
is difficult, because g-mode frequencies are densely distributed, affected strongly by
stellar evolution, and modified significantly even by moderate stellar rotation; these
properties make mode identifications difficult (see De Cat [14] for a review on SPB
stars).

Although a detailed frequency fitting between theory and observation for each
SPB star might be difficult, a collective property as simple as the distribution of SPB
stars in the HR diagram gives us useful information on the extent of convective-core
overshooting. The “red” (or cooler) boundary of the SPB (g-mode) instability region
corresponds to the disappearance of convective cores. The Brunt–Väisälä frequency
in a radiative dense core is very high, and hence the wavelengths of a g-mode be-
come very short there, which, in turn, cause strong radiative damping [19, 21, 23].
This is the reason why the cool boundary from models with a core overshooting
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Fig. 8.2 Frequency-amplitude diagrams for light variations detected in Be stars by the MOST
(left panel) and the CoRoT (right panel) satellites. In addition to these stars, MOST detected in
the late-type Be star β CMi small amplitude oscillations with frequencies of 3.26 and 3.28 c/d
[45]. Frequencies and amplitudes adopted from [52]—ζ Oph, [10]—HD 127756 & HD 217543,
[51]—HD 163868, [26]—HD49330, [37]—HD 181231, [17]—HD 50209, and [25]—HD 175869.
Note that the stars observed by CoRoT tend to be more evolved (with the spectral luminosity
class IV) than the stars observed by MOST

of 0.2Hp (dotted lines in Fig. 8.1) is redder than that from models without core
overshooting (solid lines). Figure 8.1 shows that the observed SPB stars lay within
the instability boundary obtained from models without core overshooting. This in-
dicates that, in contrast to the cases of β Cephei stars, mixing by core overshooting
should be weak in SPB stars, i.e., in the slowly rotating main-sequence stars of
3–8M�. We need further accumulation of fundamental parameter data of SPB stars
to confirm the property.

Also plotted in Fig. 8.1 are the positions of rapidly rotating Be stars (filled cir-
cles). Be stars are B-type stars which have (or had sometime before) Balmer lines
in emission. The emission lines arise from a circumstellar disk ejected from the star
due to rapid rotation. Many Be stars are known to show spectroscopic and photo-
metric variations on various time-scales; in particular, short-term (order of a day)
photometric (e.g., Balona [7]) and line-profile (e.g., Rivinius and Baade [43]) vari-
ations are thought to be caused by radial and nonradial pulsations of Be stars, al-
though rotational modulations were also suggested for the photometric variations.
The Be stars with short-term photometric variations are sometimes called λ Eri vari-
ables [7]. Interestingly, Be stars tend to be located in the β Cephei (p-mode) and SPB
(g-mode) instability regions, supporting pulsation (oscillation) origin of the short-
term variations. Recently, the MOST and CoRoT satellites have found multiperi-
odic light variations in several Be stars, of which amplitude diagrams are shown in
Fig. 8.2. The multiperiodicity strongly supports the explanation that the short-term
variations of Be stars are caused by pulsations rather than rotational modulations.
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The frequency spectra in the top panels of Fig. 8.2 for the hot Be stars, ζ Oph
and HD 49330, show wide ranges of periodicities ranging from about a day to a few
hours, while the lower panels show relatively long and grouped periods. The dif-
ference can be understood by the fact that the hottest two stars lay in the β Cephei
instability range (Fig. 8.1) and p-modes and low-order g-modes are excited, while
the other relatively cooler Be stars lay in the SPB instability range where long-
period g-modes are excited. Figure 8.1 shows that some cool Be stars, including
some whose variability are detected by CoRoT (large filled circles), lay outside of
the SPB instability range obtained from models without convective core overshoot-
ing. This indicates that an extensive mixing around the convective core should be
occurring if nonradial g-modes are excited in those Be stars. The analyses for HD
181231 and HD 175869 by Neiner et al. [38] do indicate the presence of such mix-
ing. Future observation of other cool Be stars should tell whether such extensive
mixing is ubiquitous in rapidly rotating Be stars.

In contrast to the broad frequency spectra of the hottest Be stars (top panels
of Fig. 8.2) without other remarkable features, the spectra of the relatively cooler
Be stars show conspicuous frequency groups which are regularly separated. This
property comes from strong rotation effects on high-order g-modes whose intrinsic
frequencies are comparable with or less than the rotation frequencies.

8.2 Oscillations in Rotating Stars

Stellar rotation affects the oscillations in two ways: through the centrifugal force,
which deforms the equilibrium structure from spherical symmetry, and the Coriolis
force, which represents the angular momentum conservation when matter moves.
In this section we discuss rotation effects mainly on low-frequency modes (for p-
modes, see, e.g., Goupil [24]).

8.2.1 Coriolis and Centrifugal Force Effects

The effects of Coriolis and centrifugal forces can be seen from the equation of mo-
tion, which may be written in the inertial frame as

∂v
∂t
+ v · ∇v=− 1

ρ
∇p−∇ψ, (8.1)

where v is the fluid velocity, ρ the matter density, p the pressure, and ψ the gravita-
tional potential. The velocity consists of the oscillation velocity v′ and the rotation
velocity r sin θΩeφ , where eφ is the unit vector of φ direction. In equilibrium state
without oscillations, Eq. (8.1) is reduced to

−r sin θΩ2e' =− 1

ρ0
∇p0 −∇ψ0, (8.2)
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where

e' ≡ sin θer + cos θeθ = eφ × ez (8.3)

is the outwardly pointing unit vector perpendicular to the rotation axis.
Writing the variables in Eq. (8.1) as the sum of the equilibrium value and (Eule-

rian) perturbation due to oscillations, e.g., p = p0 + p′, subtracting Eq. (8.2), and
disregarding nonlinear terms with respect to the perturbed quantities, we obtain

∂v′

∂t
+Ω ∂

∂φ
v′ + v′ · ∇(r sin θΩeφ)=− 1

ρ
∇p′ + ρ

′

ρ2
∇p−∇ψ ′, (8.4)

where the subscript 0 for equilibrium quantities is dropped for ease of notation.
The relation between oscillation velocity and the Lagrangian displacement ξ is

somewhat different in a rotating star. Since dξ/dt corresponds to the Lagrangian
velocity of oscillation, the Eulerian oscillation velocity v′ is written as

v′ = dξ

dt
− ξ · ∇(r sin θΩeφ)= ∂ξ

∂t
+Ω ∂ξ

∂φ
− ξ · ∇(r sin θΩeφ). (8.5)

We express the temporal and azimuthal dependence of an oscillation mode as

ei(σ t+mφ), (8.6)

where σ is the oscillation frequency observed in the inertial frame, and m is the az-
imuthal order of the oscillation. Equation (8.6) means that we adopt the convention
that prograde modes correspond to m< 0, i.e., an oscillation propagates in the posi-
tive direction of φ (or in the direction of rotation velocity) if m< 0. Then, Eq. (8.5)
becomes

v′ = iωξ − iσr sin θeφξ · ∇Ω, (8.7)

where

ω≡ σ +mΩ (8.8)

is the frequency in the frame rotating with an angular frequency of Ω . Note that in
the case of uniform rotation, ω is constant in the stellar interior and can be adopted
as eigenfrequency.

Substituting this expression of v′ into Eq. (8.1), we obtain

−ω2ξ + 2iωΩ(ez × ξ)+ r sin θ
(

ξ · ∇Ω2)e' =− 1

ρ
∇p′ + ρ

′

ρ2
∇p−∇ψ ′, (8.9)

where ez is the unit vector parallel to the rotation axis. The second term in the left-
hand side, 2iωΩ(ez × ξ), corresponds to the Coriolis force. The centrifugal-force
effect is hidden in ∇p, which is, in the nonrotating case, equal to −erGMrρ/r2.
In the presence of rotation the centrifugal force modifies ρ−1∇p by the order of
r sin θΩ2e' and hence breaks spherical symmetry. Thus, the importance of the
centrifugal force is measured as fcen ≡ r3 sin θΩ2/GMr , which indicates that the
effect of centrifugal forces is largest at the equator on the stellar surface, where
fcen = R3

eqΩ
2/GM < 1 with Req being the equatorial radius, and minimum near

the center, where fcen→ 4π
3 sin θΩ2/Gρc� 1 with ρc being the central density.
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On the other hand, the importance of the Coriolis force can be measured by

fcor ≡ 2Ω

ω
, (8.10)

which determines the relative importance between the first two terms on the left-
hand side of Eq. (8.9); when fcor > 1, the Coriolis term is larger than the accel-
eration term (first term) and vice versa. Obviously, for a given rotation frequency,
g-modes are affected more strongly by Coriolis force than p-modes because the fre-
quencies of p-modes in the corotating frame are larger than those of g-modes.

The p-mode frequencies are bounded as ω2 � 10GM/R3 (see, e.g., Cox [11]),
while the rotation frequency is limited by Ω2 <GM/R3. Therefore, for p-modes,
fcor < 1, i.e., the effects of Coriolis forces are always small for p-modes, while
the effect of centrifugal force (deformation) can be significant for p-modes because
the amplitudes of p-modes are confined to outer layers. Actually, Reese et al. [42]
have shown that p-mode properties are significantly modified in rapidly rotating
deformed stars.

For g-modes, on the other hand, the opposite is true: fcor can be larger than unity
even in a slowly rotating star for high-order g-modes, while the effect of centrifugal
force is small even in rapidly rotating stars because the amplitude of g-modes is
confined to inner layers where the centrifugal deformation is small. The insensitivity
of g-mode frequencies to the centrifugal deformation has been shown numerically
by Ballot et al. [6].

As seen in Eq. (8.9), in the absence of rotation, the horizontal displacement ξh is
proportional to ∇h(p

′/ρ +ψ ′) with

∇h ≡ eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂φ
, (8.11)

which makes the angular dependence of an oscillation mode representable by a sin-
gle spherical harmonic Ym� (θ,φ) (see Cox [11], Unno et al. [50], or Aerts et al. [2]
for details). This simple property is lost in the presence of rotation even if the cen-
trifugal deformations are neglected, because of the presence of the Coriolis force.
Then, we express the angular dependence of oscillation by using a sum of terms
associated with spherical harmonics as

ξ =
J
∑

j=1

[

SjYmlj er +Hj∇hY
m
lj
+ T j (∇hY

m
l′j

)× er
]

and p′ =
J
∑

j=1

p′jYmlj ,

(8.12)

where lj = |m| + 2(j − 1)+ I and l′j = lj + 1− 2I with I = 0 for even modes and
I = 1 for odd modes, and J means the truncation length. Other scalar variables are
expressed in a way similar to p′. The eigenfunction for a scalar variable of an even
(odd) mode which consists of terms proportional to Ymlj with even (odd) values of
(lj − |m|) is symmetric (antisymmetric) about the equatorial plane.

As seen in the above equations, we can still assign azimuthal degree m and the
(even or odd) parity of a mode, but no longer a latitudinal degree. To identify the
latitudinal behavior of a g-mode, we sometimes use in this paper the notation �0
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for the latitudinal degree the mode would have as Ω → 0. When we discuss the
observational properties, we use the effective degree � which represents the value
of lj for the component with the maximum amplitude on the stellar surface among
the other components in Eq. (8.12), and we use �′ for the corresponding toroidal
component.

Note that toroidal components are needed in representing the displacement vec-
tors, because the toroidal velocity fields couple, through the Coriolis force, with
spheroidal velocity fields which generate variations in density, pressure, tempera-
ture, etc.

8.2.2 r-Modes

Purely toroidal motions in a nonrotating spherical star do not disturb stellar struc-
ture, so that no restoring force nor oscillations arise. In the presence of rotation,
however, the latitudinal gradient of the vertical component of the angular frequency
of rotation Ω cos θ causes a restoring force for toroidal motions so that toroidal os-
cillations occur; we call these oscillations r-modes (or global Rossby modes). All
the r-modes are retrograde in the corotating frame (see, e.g., Pedlosky [40] and
Saio [44]). If we assume that the displacement is purely toroidal and neglect the
centrifugal deformation, the toroidal oscillation would have the limiting frequency,
ωrlim, given as

ωrlim ≡ 2mΩ

�′(�′ + 1)
(8.13)

in the corotating frame. Actual frequencies of r-modes in the corotating frame de-
viate from ωrlim; the deviation is larger for higher radial order modes (Provost et
al. [41], Saio [44]). The deviation arises because the Coriolis forces associated with
toroidal motion generate spheroidal motions, i.e., vertical motion and density per-
turbations are generated, and hence buoyancy plays a role in the restoring forces for
r-modes. Because of these effects, r-modes are sometimes called “mixed modes”
(Townsend [48]) or “q-modes” (quasi g-modes; Savonije [46]). The coupling with
spheroidal motions makes it possible for r-modes (mainly toroidal oscillations) to be
excited thermally by the kappa-mechanism in the same way as g-modes are excited.
Stability analyses by Townsend [48], Savonije [46], and Lee [30] indicate that some
r-modes are actually excited by the kappa-mechanism in intermediate mass (around
3–8M�) main sequence stars, in which g-modes are also excited (SPB stars).

8.2.3 Latitudinal Amplitude Distributions

Latitudinal distributions of oscillation amplitudes are expressed as shown in
Eq. (8.12), which indicates a dependency on the ratio fcor. The distributions are
important in understanding the visibilities of excited modes.
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Fig. 8.3 Amplitude distributions for scalar variables of g-modes with m=±1 and �0 = 1 and 2
as functions of cos θ , where θ is colatitude. Left and right panels are for prograde (m=−1) and
retrograde (m = 1) g-modes, respectively. Solid and dashed lines are for even (�0 = 1) and odd
(�0 = 2) modes, respectively. A number along each line indicates the value of fcor = 2Ω/ω for
the mode. Note that an additional nodal line appears for retrograde modes when fcor > 1, which
would reduce the visibility. Dotted line shows the associated Legendre function P 1

1 (cos θ)

Figure 8.3 shows latitudinal distributions of the amplitude of p′ as functions of
cos θ for selected g-modes of m = ±1 and �0 = 1,2, in a 4.5M� ZAMS model
of rigid rotation at an angular frequency of 0.220

√

GM/R3 (or with a period of
0.96 days, Veq = 130 km/s). Although the adopted rotation rate is moderate, the
Coriolis force significantly affects the amplitude distribution of g-modes, because
frequencies are so low that the parameter fcor = 2Ω/ω is larger than around 1.
These eigenfunctions have been obtained by the method of Lee and Baraffe [32]
without using the “traditional” approximation in which the horizontal component of
rotational angular velocity, −Ω sin θeθ , is neglected. The results are very similar to
those obtained by using the traditional approximation (see, e.g., Lee and Saio [33]),
indicating that the approximation is well suited for low-frequency oscillations in
which the horizontal velocity is much larger than the radial one.

Generally, amplitudes of oscillation modes with large fcor tend to be confined to
equatorial regions. This property is consistent with the behavior of the eigenvalue
λ of the Laplace tidal equation (e.g., Lee and Saio [33] and Aerts et al. [2]), which
governs angular dependence of oscillation in the traditional approximation. As fcor

increases, λ increases rapidly except for sectoral prograde modes (�0 =−m); a large
λ corresponds to a large effective degree �, i.e., λ→ �0(�0 + 1) as Ω→ 0.

Solid lines in Fig. 8.3 are for �0 = |m| = 1, i.e., sectoral modes that have no lati-
tudinal nodal lines when Ω = 0. The prograde modes (m=−1) keep this property
even for a large fcor, while for retrograde modes (m = 1), a latitudinal nodal line
appears for the cases with fcor > 1, which reduces visibility of the mode due to
cancellation on the surface.
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Fig. 8.4 The same as Fig. 8.3 but for g-modes of m= 0 (left panel) and r-modes of m= 1 (right
panel). In the left panel, solid and dashed lines are �0 = 2 (even) and �0 = 1 (odd) modes, respec-
tively. In the right panel, solid lines are for even modes with �= �′ − 1= 1, and dashed lines are
for odd modes with � = �′ + 1 = 2. Dotted lines shows the Legendre function of P1(cos θ) (left
panel) and P 1

2 (cos θ) (right panel)

The left panel of Fig. 8.4 shows latitudinal amplitude distributions of axisym-
metric (m= 0) g-modes (dashed lines for �0 = 1 modes, and solid lines for �0 = 2
modes). Similarly to nonaxisymmetric modes, amplitudes of axisymmetric modes
tend to be confined in equatorial zones as fcor increases; in particular, for �0 = 1
modes, the amplitude weight shifts from the pole to low latitudes.

The right panel of Fig. 8.4 shows amplitude (p′) distributions of selected r-modes
of m= 1 in the same model as in Fig. 8.3. Red solid lines are for even r-modes with
�′ = �+1= 2, and blue dashed lines are for odd r-modes with �′ = �−1= 1, where
�′ and � are the latitudinal degrees for the dominant toroidal component and for the
corresponding spheroidal component, respectively. (The parity refers to the property
of scalar variables.)

For r-modes of m = 1 (right panel of Fig. 8.4), a low-order mode close to the
limiting frequency ωrlim (Eq. (8.13)) and a relatively high-order mode are shown
for each parity. (For low-order r-modes of m= 1, fcor ∼ �′(�′ + 1).) The amplitude
distribution of a higher-order r-mode tends to be more confined to the equatorial
region, which is similar to high-order g-modes having large fcor. An important dif-
ference from retrograde g-modes is that no additional latitudinal nodal-line appears
for r-modes. The stability analyses for r-modes by Townsend [48] and Lee [30] indi-
cate that odd r-modes are more easily excited in B-type main-sequence stars, while
Savonije [46] found even (symmetric with respect to the equator) r-modes to be ex-
cited in some models. We expect odd r-modes to be detected unless the inclination
angle between rotation axis and the line-of-sight is close to 90◦.
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8.2.4 Expected Frequency Ranges of g- and r-Modes

High-order g-modes (Gautschy and Saio [23], Dziembowski et al. [21]) and r-modes
(Townsend [48], Savonije [46], Lee [30]) are excited by the kappa-mechanism at
the Fe-opacity bump in intermediate mass (around 3–8M�) main-sequence stars.
Some g-modes are, however, damped in rapidly rotating stars (fcor > 1) due to mode
couplings. The mode coupling occurs when two normal modes with the same m
and parity but with different �0 have similar oscillation frequencies, as these two
modes are no longer independent in the presence of the Coriolis force. Lee [29]
has found that the mode couplings tend to damp retrograde g-modes. The effects
of the mode couplings are discussed in detail by Aprilia et al. [3] and by Lee in
[31] and in Chap. 7 of this volume. The damping effects can also be significant on
prograde g-modes except for sectoral modes (�0 = −m). Although some prograde
tesseral (�0 >−m) g-modes might still remain excited in rapidly rotating stars, the
effective degrees (�) of these modes might be too high to be detectable. Therefore,
most visible modes should be low-degree prograde sectoral (�0 =−m) g-modes and
(retrograde) r-modes in rapidly rotating intermediate mass stars.

For high-order g-modes in rapidly oscillating stars, ω � |m|Ω with ω being
frequencies in the corotating frame, so that we expect to observe these modes at
σ = |ω−mΩ| ∼ |m|Ω .

Since sectoral prograde g-modes are expected most visible as discussed above,
we expect groups of frequencies slightly above Ω and 2Ω for m = −1 and −2
modes, respectively. (Modes with higher |m| are expected to be less visible due to
cancellation.)

For r-modes with m = 1, only odd modes (�′ = 1) seem to be excited in B-
type stars, which have ω ∼Ω and whose observational frequencies are very small,
σ �Ω . Symmetric (even) r-modes of m= 2 (�= 2) are also excited in some cases
for which �′ = 3 and hence ωrlim = 1

3Ω . Therefore, frequencies in the observer’s
frame are slightly larger than 5

3Ω .
In summary, we expect to observe groups of frequencies at approximately

g-modes: Ω, 2Ω, and r-modes: 0,
5

3
Ω, (8.14)

where we have assumed arbitrarily that modes with effective degrees �≤ 2 are vis-
ible.

Figure 8.5 shows growth rates and azimuthal order m of the low-degree (�≤ 2)
modes excited in a 4.5M� main-sequence model of rigid rotation at various speeds.
The abscissa indicates the frequencies in the observer’s frame. Red (solid) and blue
(dotted) lines are for even and odd modes, respectively. In the model of the lowest
rotation frequency (Ω = 0.073, bottom panel), no r-modes are excited, and we see
no appreciable effects of rotation on the stability of g-modes; rotation only disperses
frequencies by the effect of transformation from corotating to inertial frames, σ =
ω−mΩ .

In the second lowest rotation case with a normalized angular frequency of rota-
tion Ω = 0.15, m= 1 odd r-modes with �′ = �− 1= 1 are excited; they have very
small frequencies in the observer’s frame, because ωrlim =Ω (Eq. (8.13)).
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Fig. 8.5 Growth rates and azimuthal order m of low-degree (� ≤ 2) modes excited in 4.5M�
main-sequence models with various rotation frequencies, where the results were obtained by the
method of Lee and Baraffe [32]. The cyclic rotation frequency is indicated by a vertical dash-
dotted line at each panel, and Ω is the corresponding angular frequency of rotation normalized
by

√

GM/R3 with R being the mean stellar radius; equatorial rotation velocity is also shown.
Horizontal axis indicates the frequency in the observer’s frame

As the rotation frequency increases (Ω > 0.2), retrograde (m> 0) g-modes tend
to be damped, while prograde g-modes remain excited. Due to the damping of ret-
rograde g-modes and the increasing effect of −mΩ , frequency groupings become
conspicuous as the rotation frequency increases. In a sufficiently rapidly rotating
case (as in the top panel), well-populated frequency groups of prograde sectoral
(� = −m) g-modes are formed around 1.2Ω and 2.3Ω corresponding to m = −1
and −2, respectively.

The r-modes also form groups, because the frequency deviation |ωrlim − ω| of
an r-mode is usually much smaller than mΩ . The group at smallest frequencies
corresponds to m= 1 anti-symmetric r-modes �′ = �− 1= 1. In the fastest rotation
case (top panel) all the excited retrograde (m> 0) modes are r-modes. Note that in
this model,m= 2 r-modes with �= �′−1= 2 symmetric with respect to the equator
are excited; their observational frequencies are slightly larger than |ωrlim −mΩ| =
5
3Ω . The excitation of symmetricm= 2 r-modes in a sufficiently rapid rotator agree
with the results of Savonije [46].
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Figure 8.5 shows that frequency groupings appear even in stars whose rotation
rates are considerably less than the critical rate. This is consistent with the finding
of Balona et al. [8] from Kepler data that several B stars with relatively large V sin i
show frequency groupings.

8.3 Comparisons with Frequency Groups of Be Stars

The characteristic frequency groupings obtained for several Be stars (Fig. 8.2) were
fitted with models (e.g., Cameron et al. [10], Neiner et al. [38]). Such fittings give
estimates for rotation frequencies and in some cases, the constraint to the internal
mixing in rapidly rotating stars. In this section, we discuss what we learn from model
fittings to low-frequency oscillations of Be stars.

8.3.1 HD 50209

We will discuss, as an example, a model fitting to low-frequency oscillations of the
late-type (B8IVe) Be star HD 50209 detected by CoRoT ([17]); the amplitude spec-
trum consists of five frequency groups around 0.1 c/d, 0.6–0.8 c/d, 1.5 c/d, 2.2 c/d,
and 3 c/d (or six groups if the 0.6–0.8 c/d group is separated into two groups) as
shown in Fig. 8.2 and in the left-bottom panel of Fig. 8.6.

The fundamental parameters of HD 50209 have been derived by Diago et al. [17]
as logTeff = 4.134 ± 0.051, logL = 3.02 ± 0.39, and logg = 3.56 ± 0.11 (with
Ω/Ωcrit = 0.90). The estimated position of HD 50209 in the HRD is shown in the
right panel of Fig. 8.6 by a filled square with error bars. At the center of the pa-
rameter ranges the critical rotation rate is around 0.7 c/d. Since prograde g-modes
of m = −1 form a group around frequencies slightly larger than the rotation fre-
quency, the 0.6–0.8 c/d group should be fitted by assuming a rotation frequency
of approximately 0.6 c/d. The rotation frequency should not be far from the criti-
cal rate; i.e., the radius should be sufficiently large, otherwise no clear frequency
groupings would be expected (see Fig. 8.5). Two models of 5.0M� and 5.5M�
stars rotating at a rate of 0.6 c/d (0.007 mHz) were examined; their positions on
the HRD are shown by filled circles in Fig. 8.6. In both cases, a substantial core
overshooting (more than 0.3Hp) must be included to meet the above requirements
for Teff and luminosity within the spectroscopic estimates. The requirement of sub-
stantial core overshooting for the model of HD 50209 is common to the models
for other CoRoT Be stars, HD 175869, and HD 181231 as discussed in Neiner
et al. [38].

Both models produce similarly good fits to observed frequency groups of
HD 50209. A comparison with the 5.5M� model is shown in the left panel of
Fig. 8.6, where the method of Lee and Baraffe [32] was used for the stability analy-
sis. To fit the three (0.6–0.8, around 1.5, and 2.2 c/d) groups with g-modes, we have
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Fig. 8.6 Left panel: Frequencies of excited modes in a model of a 5.5M� star rotating at a rate
of 0.605 c/d are compared with observed frequencies of HD 50209 (bottom panel) adopted from
Diago et al. [17]; the rotation frequency of the model is indicated by the dash-dotted vertical line.
The top panel shows azimuthal order m (prograde modes correspond to m < 0), and the middle
panel shows growth rates of excited modes. Solid (red) and dashed (blue) lines are even and odd
modes, respectively. Right panel: The positions of HD 50209 (filled square with error bars) on the
HRD and two models (filled circles) that are reasonably consistent with the observed frequency
groups; a fit by one of the models is shown in the left panel. Evolutionary tracks are calculated
with a standard composition of (X,Z)= (0.70,0.02). The thick two tracks for 5.0M� and 5.5M�
are from evolution including overshooting of 0.35Hp around the convective core; the other tracks
are without overshooting

to consider azimuthal orders up to 3 (|m| ≤ 3). (The frequencies at around 3 c/d
are probably harmonics of large-amplitude frequencies at approximately 1.5 c/d as
indicated by Diago et al. [17].)

One can interpret the smallest frequency group at around 0.1 c/d as due to m= 1
anti-symmetric r-modes. Diago et al. [17] estimate an inclination angle of i ∼ 60◦
for HD 50209 for a rotation frequency of 90–95 % of the critical rate. With this
inclination angle, r-modes would suffer from no serious surface cancellation (see
right panel of Fig. 8.4) and would be detectable if the r-modes produce enough
temperature variations. It is interesting to note that a very low-frequency group is
common in SPBe stars that show g-mode pulsations, but it does not appear in hot Be
stars (ζ Oph and HD 49330) with p-mode pulsations (Fig. 8.2). This agrees with the
theoretical prediction for the excitation range of r-modes on the HRD as obtained
by Townsend [48] and supports the identification of the very low frequency groups
in SPBe stars as r-modes. In this model, symmetric r-modes of m = 2 and 3 are
excited, but they have no observational correspondence.
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Fig. 8.7 Effective temperature versus rotation frequencies estimated by model fittings for Be stars
observed by MOST and CoRoT (large circles with error bars). The top panel shows rotation fre-
quency normalized by

√

GM/R3, where R is the mean radius. With this normalization, the critical
rotation frequency corresponds to approximately 0.7. Filled squares are λ Eri variables whose
rotation frequencies are assumed to be 80 % of the observed frequencies listed in Balona [7].
The dashed line indicates the critical rotation for zero-age main-sequence models as a function of
logTeff. Dotted–dashed lines show critical rotation of TAMS (terminal-age main sequence) models
without and with substantial convective core overshooting

8.3.2 Rotation Rates of Be Stars

Figure 8.7 plots rotation frequencies obtained by fitting theoretical predictions for
frequency groups against those observed for several Be stars observed by MOST and
CoRoT (a similar diagram is shown in [10]). The lower panel shows the rotation fre-
quency of the Be stars (with error bars) as a function of the effective temperature.
The Be stars observed by CoRoT tend to have low rotation frequencies compared
to those observed by MOST. This is due to the fact that CoRoT-observed Be stars
tend to be more evolved, having spectral luminosity class IV. This apparent differ-
ence disappears if the rotation frequency is normalized by

√

GM/R3 as plotted in
the top panel of Fig. 8.7, where R is mean radius. With this normalization critical
rotation corresponds to Ω/

√

GM/R3 ∼ 0.7. This indicates that all Be stars shown
can be considered rotating nearly critically, which agrees with recent spectroscopic
estimates by Townsend et al. [49] and Cranmer [12].

Dashed and dot-dashed lines in the bottom panel of Fig. 8.7 show critical rotation
frequency as a function logTeff for ZAMS and TAMS (terminal age main-sequence)
models, respectively. For TAMS models, critical rotations with and without substan-
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tial core overshooting cases are shown. Obviously, substantial overshooting would
need to be assumed for models to be consistent with the CoRoT observations of Be
stars.

Also plotted in this figure are rotation frequencies of λ Eri variables (filled
squares); a group of Be stars which show short-term (order of a day) periodic light
variations known from ground-based observations (e.g., Balona [7]). Folded light
curves of λ Eri variables, some of which show double-wave character, are consis-
tent with the grouped frequency distributions obtained for relatively late-type Be
stars monitored by MOST and CoRoT satellites. In fact, the folded light curve of
HD 181231 from CoRoT observations (Neiner et al. [37]), for example, is similar to
typical light curves of λ Eri variables. Since a model with a rotation frequency about
20 % smaller than the frequency at the group of m=−1 modes fits well to such a
characteristic frequency distribution, rotation frequencies of λ Eri variables are as-
sumed as 80 % of the observed frequencies, and those values are plotted in Fig. 8.7.
This figure shows that the distribution of λ Eri rotation rates are consistent with Be
star models rotating nearly critically if a substantial core-overshooting of around
0.35Hp is assumed to occur in these stars. Since models without core overshooting
are consistent with the slowly rotating SPB stars, rapid rotation seems the cause of
the substantial mixing needed around the convective core (Neiner et al. [38]).

8.4 Conclusion

Rapid stellar rotation modifies properties of oscillations in complex ways and makes
comparisons between observational and theoretical results difficult. In particular,
low-order p- and g-modes excited in early type Be stars in the β Cephei instability
region show complex frequency spectra affected considerably both by deformation
of the equilibrium structure and by the Coriolis force. The frequency distributions of
these stars are such that it would seem impossible to identify modes and so compare
with theoretical results.

In contrast to the p-modes, rapid rotation helps us to identify the azimuthal de-
gree m of low-frequency modes, because observational frequencies of these modes
form groups, i.e., g-modes with the same m have similar frequencies. This prop-
erty can be used to identify m and to estimate the rotation frequency of each star.
The rotation rates thus obtained for several Be stars indicate that Be stars rotate
nearly critically, which confirms conclusions drawn from spectroscopic analyses. In
addition, in order to fit observations of some Be stars, models with substantial core-
overshooting are needed. This indicates that extensive internal mixing exterior to
the convective core occurs in rapidly rotating stars as discussed in Neiner et al. [38].
Furthermore, it might be possible in the near future to compare each g-mode (and
r-mode) frequency (or period spacings) with theory in order to obtain detailed infor-
mation on the stellar interior. Rapid rotations are advantageous in this case because
we can identify the azimuthal order m, while effects of centrifugal deformation re-
main small, as shown by Ballot et al. [6].
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Chapter 9
Connections Between Stellar Oscillations
and Turbulent Convection

K. Belkacem and R. Samadi

Abstract Since the advent of space asteroseismology, enabled by the CoRoT and
Kepler space-craft, solar-like oscillations have appeared to be a common feature of
low-mass stars from the main-sequence to the red-giant phases. In this context, scal-
ing relations that relate asteroseismological quantities and stellar parameters are an
essential tool in the study a large class of stars. Most of these relations concern the
connection between pulsations and turbulent convection. Therefore, a deep investi-
gation of this connection is necessary to obtain insight into the processes underlying
mode driving and damping and consequently to improve our knowledge of the scal-
ing relations. This is a key step that will permit us to perform a leap forward in our
understanding of stellar interiors.

9.1 Introduction

The relation between pulsations and convection is a longstanding problem in stellar
physics (see the review by [35, 36]). For solar-like pulsators, and more precisely for
the Sun, most of the first efforts had focused on the precise determination of mode
frequencies; the issue of their driving and damping was subsidiary and mainly in-
tended to settle the question of their physical nature (e.g., [37, 38]). Recently, the
modelling of mode coupling with turbulent convection has become of primary in-
terest since it appears that mode amplitudes are, potentially, a powerful seismic
diagnostic for the solar-like stars as observed by CoRoT and Kepler. In this article,
we aim to provide a comprehensive overview of mode driving and damping pro-
cesses for solar-like oscillations with particular emphasis on the scaling relations
that, for the majority of them, results from the connection between oscillatory and
convective phenomena.
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9.1.1 A Brief History on the Energetical Aspects of Solar-Like
Oscillations

The mechanism of acoustic noise generation by turbulence is a longstanding prob-
lem in fluid mechanics [51], and its manifestation in stellar physics is what we name
solar-like oscillations. The discovery of solar five-minute oscillations by [32] and
[48], reinforced by their interpretation in terms of normal modes by [72] and [47],
has made the issue of their excitation and damping of primary interest.

The problem of the stability of these modes was the first question to be ad-
dressed. Whether or not solar p-modes were overstable was investigated to deter-
mine whether mode driving is related to some κ-mechanisms, as in classical pul-
sators [35, 36]. Such a stability analysis was performed by [1, 2, 37], who concluded
that most of the solar p-modes are unstable, but later studies [6, 37], by including
the effect of turbulent pressure and turbulent viscosity, found them to be stable. The
subsequent observational evidence, which revealed normal modes with Lorentzian
profiles1 (e.g., [34]), has supported the latter view, and it is now clear that solar five-
minute oscillations are stable (i.e., their amplitudes result from a balance between
driving and damping).

On mode driving, a first attempt to explain the observed solar five minute oscil-
lations was carried out by [73] and was followed by [70]. The latter generalised the
approach of [50] to a stratified atmosphere and concluded that the Reynolds stresses
should be the major source of acoustic wave generation. Except for a transient de-
bate on the relative contributions of the Reynolds stresses and the non-adiabatic part
of gas pressure, this conclusion is still favoured today. A noticeable leap forward
has been made by [38]. Despite an under-estimation of the observed amplitudes
[56], the work of [38] still constitutes the foundation of the current formalisms for
modelling mode driving. Since these pioneering works, different improved models
have been developed [5, 15, 16, 18, 25, 29, 40, 61, 62]. These approaches differ from
each other either in the way the turbulent convection or the excitation processes are
described.

For mode damping, the situation is more confusing in the sense that there is
no clear consensus on the dominant physical mechanisms at work. Such disagree-
ments are mainly related to the strong coupling between convection and oscillation,
which makes the problem difficult when the characteristic times associated with
the convective motions are of the same order as the oscillation periods. While it
was indisputable that solar p-modes are stable, non-adiabatic calculations (e.g., [1])
were unable to reach this conclusion, thus emphasising the need of an extra physical
ingredient. [39] proposed that the shear due to Reynolds stresses, modelled by eddy-
viscosity, is of the same order of magnitude as the non-adiabatic component of the
perturbation of gas pressure. [41] and [6] found that the damping is dominated by

1A Lorentzian profile in the Fourier time domain corresponds to an exponentially damped oscilla-
tion in the time domain.
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the modulation of turbulent pressure, while [30, 42], and [21] also include the per-
turbation of the dissipation rate of kinetic energy into heat that acts to compensate
the perturbation of turbulent pressure.

It seems that the main shortcut available in modelling mode-damping rates is
the way in which turbulent convection is described. One major deficiency of those
formalisms is that they use of the mixing-length theory, thus reducing the whole of
the turbulent cascade to a single length scale. While this can be an acceptable as-
sumption for modelling the convective background, the perturbation of the mixing-
length cannot account for the relation between oscillations and the turbulent cas-
cade. [75] proposed an alternative approach using a Reynolds stress formalism (e.g.,
[24]) to model convection and, using a perturbation method, computed mode damp-
ing rates. However, in their analysis some modes are found unstable, contrary to the
observational evidence. Here, then, is the current the state of art for the Sun.

2006 saw the start of the era of space asteroseismology with the space-borne
mission CoRoT [52], allowing us for the first time to observe stars on long time
scales and with almost no interruptions. This led to the first detection of solar-like
oscillations in stars with sufficient accuracy to measure individual mode parame-
ters (including mode amplitudes and linewidths). HD 49933 is, historically, the first
representative of a long series that were to follow [3]. This is particularly the case
with the discovery of thousands of red giants exhibiting solar-like oscillations. The
launch of the Kepler spacecraft in 2009 now provides observations of hundreds of
main-sequence solar-like stars.

In this lecture, we will discuss the great potential of those space observations
which should enable us, using the relations bounding mode-parameters and stellar-
parameters, to improve our understanding of mode damping and driving and their
connection with convective properties across the HR diagram.

9.1.2 Mode Damping and Driving in Solar-Like Pulsators:
A Difficult Problem

Before discussing the current modelling of mode damping and driving, it is worth-
while that we make some quantitative remarks.

Modes in solar-like pulsators are mainly driven and damped in the uppermost
part of the convective region, i.e., in the superadiabatic region near the photosphere
and at the transition between the convective and radiative atmosphere. In these lay-
ers, convection becomes inefficient, and convective velocities increase rapidly over
a relatively small radial scale to sustain the convective flux. As a result, in this re-
gion the convective time scale reaches a minimum (which is of the order of 5 min),
while the kinetic flux is maximal. Given the fact that the efficiency of the driving
crucially depends on the magnitude of the kinetic flux and the convective time scale
(see Sect. 9.2.1), acoustic modes with periods of the order of few minutes can be
efficiently excited in the uppermost part of the convective region. Concerning the
thermal structure of the uppermost layers, the thermal time scale (also called the
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thermal relaxation time scale) is also of the order of 5 min. This is of the utmost
importance since it defines how the star’s structure reacts to any thermal pertur-
bation and will, as we will see later, defines the strength of thermal normal-mode
leakages (see Sect. 9.2.2). In the Sun, several millions of modes (stochastically ex-
cited by turbulent convection as well as damped) have been detected. The maximum
amplitude of the excitations is found at a frequency of about 3 mHz with typical
values of amplitudes of 2.5 part per million (ppm) (see [53] for details). In terms
of mode surface oscillation velocities, the observed maximum amplitude is about
20 cm s−1, which immediately allows us to deduce that solar (and solar-like) os-
cillations are small perturbations of turbulent convection, thus justifying the widely
used and commonly accepted linear approximation to model them. More interest-
ingly, the frequency of the peak amplitude (around 3 mHz) corresponds to a time
scale of about 5 min. For mode damping the frequencies are found to be of the order
of several µHz, corresponding to life-times of several days.

These numbers enable us to make some comments. It turns out that the linear
approximation for modelling normal modes in solar-like stars is reasonable, given
the ratio between mode amplitudes and turbulent convection velocities. However,
while the structure of modes can be described using a perturbative approach, it is
impossible to use such an assumption for modelling mode driving. Indeed, we are
in the opposite situation where one has to describe the influence of an overwhelm-
ing dominant process, turbulent convection, on a very small one, pulsations. In this
sense, mode driving is a nonlinear problem. The situation is seen to be even more
complex when we note that the characteristic convective time scale and length scale
are almost equal to the respective characteristic modal scales. For mode damping,
the interaction between convection and pulsation is still subject to the same difficul-
ties as when considering mode driving, except that one can linearise the equation
by neglecting the driving terms in the wave equations. The result is that one re-
solves mode damping and driving as two well-separated sets of equations. While
this certainly constitutes a real simplification, other problems arise from the need
to consider the thermal coupling between the background and the pulsations. The
thermal relaxation time scale, as previously introduced, is also of the same order of
magnitude as both the convective time-scale and the modal period, so what may be
called a triple resonance occurs in the superadiabatic layers.

Our quantitative picture referred to the Sun, but the situation is similar in almost
all solar-like pulsators.

9.2 Mode Driving and Damping by Turbulent Convection

For acoustic modes (p-modes), the total mode energy (potential and kinetic) is

Eosc(t) =
∫

V
ρ|Vosc|2 d3r, (9.1)

where V is the star volume, Vosc the mode velocity at the position r, and ρ the mean
density.
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Let η a linear damping rate, and P be the amount of energy injected per unit
time into a mode by an arbitrary driving source (which acts over a time scale much
shorter than 1/η). The variation of Eosc with time is then given by

dEosc

dt
=P − 2ηEosc. (9.2)

Solar-like oscillations are known to be stable modes, so there is a stationary state
that is obtained by averaging Eq. (9.2) over a long time scale

dEosc

dt
= 0 ⇐⇒ Eosc = P

2η
, (9.3)

where ( ) refers to a time average.
Equation (9.3) shows that mode energy is controlled by the balance between

mode driving (P) and damping (η). For ease of notation, we will henceforth drop
the ( ) from P . The next step consists in modelling separately mode driving and
damping, which are discussed in detail in Sects. 9.2.1 and 9.2.2, respectively.

9.2.1 Modelling Mode Driving (P)

Turbulent motions and associated entropy fluctuations taking place at the upper-
most part of the convective envelope are believed to excite solar-like oscillations
through a mechanism that we will briefly highlight below.2 We start from the per-
turbed momentum and continuity equations

∂ρV
∂t
+∇ : (ρVV)+∇P1 − ρ1g0 = 0, (9.4)

∂ρ1

∂t
+∇.(ρV) = 0, (9.5)

where P , ρ, V, and g denote, respectively, the gas pressure, density, velocity, and
gravity. In Eqs. (9.4) and (9.5), the subscript 0 denotes Eulerian fluctuations, and the
subscript 1 denotes equilibrium quantities. These equations must be supplemented
by an Eulerian description of the perturbed equation of state

P1 = c2
s ρ1 + αss1 +R(ρ1, s1), (9.6)

where s is the entropy, αs = (∂P0/∂s0)ρ , cs = Γ1 P0/ρ0 is the average sound speed,
and Γ1 = (∂ lnP0/∂ lnρ0)s the adiabatic exponent. The term R(ρ1, s1) in the RHS
of Eq. (9.6) represents higher-order terms. The later are shown to have a negligible

2A detailed derivation can be found in [61].
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contribution to mode driving (see [38], GK hereafter). The velocity field is decom-
posed into a component due to the oscillations (Vosc) and a component due to the
turbulent motions (u), that is, V=Vosc + u.

By combining Eqs. (9.4), (9.5), and (9.6) we obtain the inhomogeneous wave
equation

ρ0

(
∂2

∂t2
−L

)

[Vosc] +D[Vosc] = ∂

∂t
S−C (9.7)

with

S ≡ [∇ : (ρ0uu)−∇ : 〈ρ0uu〉
︸ ︷︷ ︸

Reynolds stress contribution

− ∇(ᾱsst )
︸ ︷︷ ︸

Entropy contribution

]

, (9.8)

where st is the Eulerian turbulent entropy fluctuations. The terms in Eq. (9.8) are
the driving sources, namely the Reynolds stress tensor and a source term due to
entropy fluctuations, respectively. The last term C in the RHS of Eq. (9.5) involves
higher-order driving terms that are found to be negligible (see SG and GK). Finally,
the term D in the LHS of Eq. (9.7) gathers terms that couple linearly the oscillation-
and turbulence-induced fluctuations.

To solve the inhomogeneous wave equation (Eq. (9.7)), we first solve the ho-
mogeneous equation (i.e., Eq. (9.7) without the forcing terms on the RHS), sup-
plemented by appropriate boundary conditions. The solutions are the adiabatic
eigendisplacement (ξ ) and associated eigenfrequency (ωosc). Then, we assume that
the solution of Eq. (9.7) takes the form

δrosc ≡ 1

2

(

A(t)ξ(r)e−iωosct + cc), (9.9)

where cc indicates complex conjugate, ωosc is the mode eigenfrequency, and A(t)
is the instantaneous amplitude resulting from both driving and damping. Substitut-
ing Eq. (9.9) into Eq. (9.7), multiplying by ξ∗(r, t), and integrating over the stellar
volume gives, finally,

dA

dt
+�σA= 1

2ω2
oscI

∫

ξ∗ · ∂S
∂t

d3x with I ≡
∫ M

0
ξ∗ . ξ dm, (9.10)

where the term �σ comes from the contribution of D. The latter is replaced by the
damping rate η in order to take (a posteriori) all sources of damping into account. In-
deed, the real part of D results in a (negligible) frequency shift, while the imaginary
part contributes to the damping.

Equation (9.10) is straightforwardly solved, and one obtains the solution for A

A(t)= ie−ηt

2ωoscI

∫ t

−∞
dt ′

∫

V
d3x e(η+iωosc)t

′
ξ∗(x) .S

(

x, t ′
)

, (9.11)

where the spatial integration is performed over the stellar volume (V ).
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In order to simplify subsequent theoretical derivations, we will consider the
Reynolds source term only. In addition, since the excitation arises from a turbu-
lent medium, the sources are random and such that A(t) cannot been determined in
a deterministic way. We thus derive an expression for the average squared 〈|A|2〉,
where the average is performed over a larger set of independent realisations. Fur-
thermore, it can been shown with the help of Eq. (9.2) that 〈|A|2〉 is related to P
and η according to P = ηIω2

osc〈|A|2〉. Finally, by using Eq. (9.11) we establish the
following expression for P (see SG for a detailed derivation)

P = 1

8I

∫

V
d3x0 ρ

2
0

∫ +∞

−∞
d3r dτ e−iωoscτ

(∇iξ∗j
)

1

〈

(uiuj )1(ukum)2
〉

(∇kξm)2,
(9.12)

where x0 is the position in the star, r and τ are the spatial and temporal correlation
lengths associated with turbulence, and the subscripts 1 and 2 refer to the quantities
evaluated at the spatial and temporal positions [x0 − r

2 ,− τ2 ] and [x0 + r
2 ,
τ
2 ].

We further assume that the eigendisplacement is spatially decoupled from the
source terms. In other words, ξ varies on a scale larger than the characteristic scale
of turbulence. This permits us to reduce Eq. (9.12) to

P = 1

8I

∫

V
d3x0 ρ

2
0∇iξ∗j ∇kξm

∫ +∞

−∞
d3r dτ e−iωoscτ

〈

(ui uj )1(ukum)2
〉

. (9.13)

The second integral of Eq. (9.13) involves the term 〈(uiuj )1(ukum)2〉, which is a
two-point spatial and temporal correlation product between uiuj and ukum. If one
adopts the quasi-normal approximation (hereafter QNA), it is possible to decompose
the fourth-order correlation product as follows

〈

(uiuj )1(ukum)2
〉 = 〈

(uiuj )1
〉〈

(ukum)2
〉+ 〈

(ui)1(um)2
〉〈

(uj )1(uk)2
〉

+ 〈

(ui)1(uk)2
〉〈

(uj )1(um)2
〉

. (9.14)

Note that, strictly, the decomposition of Eq. (9.14) is only valid when the velocity is
normally distributed (see [14] for an extensive discussion).

We now define φi,j to be the spatio-temporal Fourier transform of 〈(ui)1(uj )2〉.
For an inhomogeneous, incompressible, isotropic, and stationary turbulence, there
is a relation between φi,j and the kinetic energy spectrum E, which is [8]

φij (k,ω) = E(k,ω)
4πk2

(

δij − kikj
k2

)

, (9.15)

where k and ω are the wavenumber and frequency associated with the turbulent
elements, and δi,j is the Kronecker symbol. Following [70], for each layer, we de-
compose E(k,ω) as

E(k,ω) = E(k)χk(ω), (9.16)



186 K. Belkacem and R. Samadi

Fig. 9.1 Solar p-mode
excitation rates P as
functions of the frequency
νosc = ωosc/(2π). The dots
correspond to the
observational data obtained
by the GONG network, as
derived by [9], and the
triangles correspond to
observational data obtained
by the GONG network as
derived by [59] for �= 0 to
�= 35. The solid line
corresponds to theoretical P
computed as detailed in [18]

where E(k) is the time-averaged kinetic energy spectrum, and χk(ω) is the fre-
quency component of E(k,ω). Note that χk(ω) and E(k) satisfy the normalisation
conditions

∫ +∞

−∞
dωχk(ω)= 1 and

∫ ∞

0
dkE(k)= 1

2

〈

u2〉= 3

2
u2

0, (9.17)

where we have defined the characteristic velocity u2
0 ≡ 〈u2

z〉 with uz the vertical
component of the velocity field.

Now, using Eqs. (9.14) to (9.16), Eq. (9.13) can be written for radial modes as

P = π
3

2I

(
16

15

)∫ M

0
dm
ρ0u

3
0

k4
0

∣
∣
∣
∣

dξr
dr

∣
∣
∣
∣

2

S̃R(r,ωosc), (9.18)

where we have defined the dimensionless source function

S̃R =
(

k4
0/u

3
0

)
∫ ∞

0
dk
E2(k, r)

k2

∫ +∞

−∞
dωχk(ωosc +ω, r)χk(ω, r), (9.19)

and where we have introduced the characteristic wavenumber k0 ≡ 2π/Λ, where Λ
is a characteristic size of the most-energetic eddies.3 A similar dimensionless source
function can be derived for the source term associated with the entropy fluctuations.
We also point out that the present formalism has been generalised for non-radial
acoustic modes [16] as well as gravity modes [17].

For solar modes, the most recent and realistic calculation of P has been un-
dertaken by [18]. This calculation is compared in Fig. 9.1 with helio-seismic data.
The theoretical calculation results in an overall agreement with the seismic data. We
stress that this result had been obtained without adjustments of free parameters.

3This characteristic size can be determined from the kinetic E(k) or by default using some pre-
scriptions (for more details, see Sect. 11.5.1 in [60]).
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To explain qualitatively the variation of P with mode frequency, we rewrite
Eq. (9.18) in a more convenient form by introducing the flux of kinetic energy (Fkin).
For isotropic turbulence,

Fkin = 〈uz Ekin〉 ≈ 3

2
ρ0u

3
0, (9.20)

where Ekin ≡ (1/2)ρ0u2 is the specific kinetic energy. Substituting Eq. (9.20) into
Eq. (9.18) yields the relation

P ∝ 1

I

∫ M

0
Λ4Fkin

∣
∣
∣
∣

dξr
dr

∣
∣
∣
∣

2

S̃R(r,ωosc)dm, (9.21)

where we have introduced the characteristic life-time τ0 ≡Λ/u0.
Equation (9.21) permits us to highlight the key mode-driving quantities (for more

details, we refer the reader to [60]).

• The mode inertia (I ): The lower the mode frequency, the larger the eigendisplace-
ment in the interior. Hence, Eq. (9.10) implies an increase of I with decreasing
frequency. As a consequence, for the same amount of energy, it is more difficult
to drive low-frequency modes than high-frequency ones. This is the main cause
of the rapid decreases of P with decreasing frequency as seen in Fig. 9.1.
• The eddy characteristic size (Λ): As seen in Eq. (9.21), mode-driving scales lo-

cally as Λ4. There is, however, no simple physical principle from which this
characteristic size can be derived. Nevertheless, this size can be obtained thanks
to 3D hydrodynamical simulations; according to [63], it varies rather slowly in
the upper part of the convective zone where the driving is the most efficient. The
simulations also show that, from one stellar model to another, this size scales as
the pressure scale-height (Hp) at the photosphere [33, 65] and scales rather well
as the ratio Teff/g, where g is the surface gravity.
• The flux of kinetic energy (Fkin): In the framework of the mixing-length approach,

it can be shown that Fkin is roughly proportional to the convective flux Fc (see
the lecture notes by [22]). The latter increasing as we go up into the convective
region. In the upper part of the convective envelope (where mode-driving is most
efficient), Fc is almost constant and scales as T 4

eff, where Teff is the effective
temperature. Next, in the transition region between the convective zone and the
atmosphere, Fc (and hence Fkin) decreases rapidly.
• The mode compressibility (dξr/dr): This quantity reaches its maximum in the

transition region between the convective and radiative regions, where the temper-
ature decreases rapidly. The maximum of the mode compressibility is also shown
to increase with increasing frequency. Therefore, the mode compressibility, to-
gether with the mode inertia, favours high-frequency modes.
• The (dimensionless) source function at the mode frequency (S̃R): As described by

Eq. (9.19), this term depends on the shape of the kinetic energy spectrum E(k)

or, more precisely on χk , the Fourier transform of the time-correlation function
of the velocity field at a given wavenumber k (e.g., [49], Chap. V-10). χk(ω) is a
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Lorentzian function (1/(1+(τ̃kωosc)
2)) [18, 20, 62], where the characteristic time

τ̃k scales as τ0 [62]. The quantity χk(ω) decreases rapidly with increasing ωosc.
The characteristic time τ0 reaches a minimal value τmin

0 in the super-adiabatic lay-
ers and is of the order of 5 minutes. Therefore, for modes with a frequency larger
than νosc � 3 mHz, the source function S̃R decreases rapidly with frequency. This
latter term balances the effect of the mode compressibility, and the net result is,
as seen in Fig. 9.1, a slow decrease with νosc for νosc � 3 mHz.

9.2.2 Mode Damping (η)

The calculation of mode-damping rates is a difficult problem for solar-like stars, as
explained in Sect. 9.1.2. The assumption of adiabatic pulsation must be abandoned,
resulting in a higher-order problem to be solved. The full computation of the non-
adiabatic equations is therefore required, and currently only a few codes are able
to do this (by including the perturbation of turbulent convection, see the review
by [43]).

Our objective is not to provide here an exhaustive view of the non-adiabatic prob-
lem but rather to discuss the different physical processes at work. Consequently, it
is worthwhile to explicitly derive those contributions.

Let us start with the equations governing stellar fluids. To this end, several pre-
liminary assumptions are useful. We first neglect viscous effects, as is usually ac-
cepted in the stellar context, and we also neglect the effects of rotation and of the
magnetic field on the structure of the star and so on the oscillations. Hence, the
equations read

∂ρ

∂t
+∇ · (ρV)= 0, (9.22)

∂V

∂t
+V ·∇V+∇ψ + 1

ρ
∇P = 0, (9.23)

�ψ − 4πGρ = 0, (9.24)

T
dS

dt
− ε − 1

ρ
∇ · F= 0, (9.25)

where ρ is the density, V the fluid velocity, ψ the gravitational potential, G the
gravitational constant, T the temperature, S the specific entropy, P the total pressure
(i.e., the gas, turbulent, and radiative pressure), ε the rate of energy generation, and
F the energy flux. Note that one must also include equations to describe the radiative
and the convective fluxes, as well as the equation of state.

The logical continuation is to perturb the set of Eqs. (9.22)–(9.25). To this end,
several additional assumptions are required. First, that the background is at rest,
i.e., any dynamical processes such as convection are ignored except through the
inclusion of the convective flux in the energy equation or turbulent pressure in the
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momentum conservation equation. This is indeed an inconsistent procedure since a
perturbation from the mean structure can be related to the oscillatory or convective
motion. However, it makes the problem tractable since retaining it prevents us from
solving the problems of convection and oscillation simultaneously. Moreover, such
a simplification permits us to separate the issues of mode damping and driving (as
already mentioned in Sect. 9.1.2).

To perform the perturbation procedure, it is useful to use a Lagrangian variation
projected onto spherical harmonics, such that any quantity y(r, t) reads

δy(r, t)= δy(r)Ym� (θ,φ)eiσ t , (9.26)

where Ym� is the spherical harmonic with degree � and azimuthal number m. Note
that the frequency σ = ωosc + iη is a complex quantity, where ωosc is the modal
frequency, and η the damping rate. To avoid superfluous complexity, we will restrict
our discussion to radial modes, and radiative pressure will be neglected. Finally, the
perturbed equations governing the problem are found to be (see [42] for a detailed
derivation)

δρ

ρ
+ 1

r2

∂

∂r

(

r2ξr
) = 0, (9.27)

σ 2ξr − dδψ

dr
− 1

ρ

dδP

dr
− g δρ

ρ
= 0, (9.28)

σ 2rξh − δψ − δP
ρ
= 0, (9.29)

iσT δS + dδL

dm
+ δ[βg ⊗∇Vconv +Vconv ·∇Pg] = 0, (9.30)

where ⊗ stands for the tensorial product, δρ is the perturbation of density, Pg the
gas pressure, ξr , ξh the radial and horizontal eigenfunctions, δψ is the perturbation
of the gravitational potential, δP the perturbation of total pressure, δS the perturba-
tion of specific entropy, δL the perturbation of luminosity (including both radiative
and convective luminosity), Vconv the convective velocity, and βg the non-diagonal
part of the gas pressure tensor. To derive Eqs. (9.27)–(9.30), it was assumed that
turbulence is isotropic and ε is null. We recall that one also has to add an expression
for the perturbation of the radiative and convective fluxes as well as the perturbed
equation of state [42].

Hence, it is possible to write down the integral expression of mode-damping rates
by combining Eq. (9.28) (multiplied by ξ�r ) with Eq. (9.29), then integrating over
the star’s mass. This gives, finally,

η= 1

2ωoscI

∫ M

0
I

[
δρ

ρ

∗ δP
ρ

]

dm, (9.31)

where the star denotes the complex conjugate, I the imaginary part, and I the mode
inertia.
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Equation (9.31) is the integral expression of the damping rates. To get more in-
sight into the physical mechanisms at work, it is useful to recast Eq. (9.31) by first
noting that the perturbation of total pressure is the sum of gas and turbulent pressure
(δP = δPturb + δPg). In addition, if we use the thermodynamic relation

δPg

Pg
= PT δS

cv
+ Γ1

δρ

ρ
, (9.32)

where

PT = (Γ3 − 1)
cvρT

P
and (Γ3 − 1)=

(
∂ lnT

∂ lnρ

)

s

, (9.33)

then Eq. (9.31), together with Eq. (9.32), permits us to express the damping rate in
a more explicit form

η= 1

2ωoscI

∫ M

0
I

[(
δρ

ρ

∗
T δS

)

(Γ3 − 1)+
(
δρ

ρ

∗ δPturb

ρ

)]

dm. (9.34)

One can then go a step further by inserting Eq. (9.30) (where the last term of this
equation is named δε2 for short) into Eq. (9.34), to obtain

η = 1

2ωoscI

∫ M

0
I

(
δρ

ρ

∗ δPturb

ρ

)

dm
︸ ︷︷ ︸

turbulent pressure contribution

+
(2)

1

2ω2
oscI

∫ M

0
Re

[

(Γ3 − 1)
δρ

ρ

∗ dδLc
dm

]

dm

︸ ︷︷ ︸

convective flux contribution

+
(3)

1

2ω2
oscI

∫ M

0
Re

[

(Γ3 − 1)
δρ

ρ

∗ dδLr
dm

]

dm

︸ ︷︷ ︸

radiative flux contribution

−
(4)

1

2ω2
oscI

∫ M

0
Re

[

(Γ3 − 1)
δρ

ρ

∗
δε2

]

dm

︸ ︷︷ ︸

dissipation of kinetic energy contribution

, (9.35)

where Re denotes the real part.
The first term of Eq. (9.35) is the contribution of turbulent pressure, which orig-

inates on the perturbation of the mean part of the Reynolds stress tensor. The os-
cillation loses part of its energy by performing a work δPturb dV , where the varia-
tion of volume dV induced by the oscillation is related to the mode compressibility
∇ · ξ = −δρ/ρ. These losses of energy are mainly controlled by the phase differ-
ences between δρ and δPturb. The second term of Eq. (9.35) is the damping associ-
ated with the perturbation of the convective heat flux. This contribution is certainly
the more complex to evaluate, since it depends strongly on how the convection and
oscillations are coupled, and consequently it depends on the dynamic modelling of
convection. The third contribution to the damping rates is related to the perturba-
tion of the radiative flux. It contains two dominant terms: the opacity effect that is
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Fig. 9.2 Damping rates versus mode frequency, computed for a model of a star with a mass of
M = 1.1M� and an effective temperature of Teff = 6026 K on the main sequence. The solid line
corresponds to the total damping rate, the dash-dotted line to the contribution of the perturbation
of turbulent pressure (the second term of the integrand of Eq. (9.34)), and the dashed line to the
absolute value of the contribution of the entropy perturbations (the first term of the integrand of
(Eq. 9.34)). The latter being negative, it partially compensates for the former leading to an effective
damping shown by the solid line. The vertical dotted line corresponds to νmax

responsible for the instability of modes in classical pulsators but negligible in solar-
type stars (see [57] for a discussion on opacity-driven modes) and a contribution
related to temperature fluctuations δT . Finally, the last contribution of Eq. (9.35) is
the contribution to the damping associated with the perturbation of the dissipation
rate of turbulent kinetic energy into heat. This contribution was introduced by [46]
and more recently by [42]; it partly compensates the effect of turbulent pressure
(ηturb), and, in the limit of a fully ionised gas in which radiative pressure can be ig-
nored, the sum vanishes. Note that Eq. (9.35) contains what is nowadays considered
as the dominant contributions, but additional possible sources of damping have been
investigated and discussed by [44] and [13].

Figure 9.2 displays the mode damping versus the mode frequency as well as
the two contributions expressed in Eq. (9.34). The calculation is performed with
the MAD code [42]. It turns out that the contribution of turbulent pressure domi-
nates the damping and is partly compensated by the contribution of entropy. Both
contributions have roughly the same order of magnitude, and hence the total mode
damping is small compared to the absolute values of both the entropy and turbulent
pressure. In addition, we note that the depression (or plateau) of the damping rates is
the result of the maximum compensation between the two contributions. This turns
out to be the case for all the models, from the main-sequence to the red-giant phases.

9.3 Scaling Relations as the Result of the Connections Between
Pulsations and Convection

Scaling relations between asteroseismic quantities and stellar parameters such as
stellar mass, radius, effective temperature, and luminosity have been derived from
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ground-based observational data by several authors (e.g., [45, 55]). More recently,
the space-missions CoRoT and Kepler have confirmed those results by providing
accurate and homogeneous observations of solar-like oscillations of hundreds of
main-sequence stars and thousands of red-giant stars.

Scaling relations are essential to study a large set of stars for which, in general,
little is known: to provide a first-order estimate for mass and radius (e.g., [7, 55]),
or to probe the populations of red giants [54]. Scaling laws can also lead to a bet-
ter understanding of the underlying physical mechanisms governing the energetical
behaviour of modes [19, 21]. In the following sections, we will describe this con-
nection between convection and pulsations and demonstrate that it is a promising
approach to the problem of inference of properties of turbulent convection in stars.

9.3.1 Relation Between Mode Line-Width with Effective
Temperature

For mode linewidths (or equivalently mode damping rates), scaling relations have
been investigated only very recently. This is the result of the need for long-time and
almost-uninterrupted monitoring to resolve individual modes and to enable their
precise measurements.

Reference [44], and later [27], have investigated the dependence of mode-
damping rates on global stellar parameters. From ground-based measurement, [27]
found that mode linewidths follow a power-law of the form η ∝ T 4

eff (where Teff
the effective temperature) and no clear tendency emerged when η is scaled with the
ratio L/M . Nevertheless, these measurements are based on short-term observations
and derived from an inhomogeneous set of analysis and instruments, resulting in a
large dispersion. This was settled by [10, 11] (Fig. 9.3, top panel) using a homoge-
neous sample of CoRoT data. They found that a unique power-law hardly describes
the entire range of effective temperature covered by main-sequence and red-giant
stars and proposed that mode linewidths of main-sequence stars follow a power-
law of T 16±2

eff , while red-giant stars only slightly depend on effective temperature
(T −0.3±0.9

eff ). The latter result was later confirmed and extended by Kepler observa-
tions (Fig. 9.3, bottom panel) to main-sequence and sub-giant stars [4].

The theoretical work of [27], based on the formalism developed by [6, 44] and
[25], predicted a power-law of η∝ T 4

eff, which disagrees with CoRoT and Kepler ob-
servations. In contrast, [21], based on the formalism of [42], were able to reproduce
both CoRoT and Kepler observations. Therefore, in the following we will mainly
discuss the results of [21].

9.3.1.1 The Scaling Relation as a Probe for Damping Mechanisms

The relation between mode linewidths and effective temperatures is an important
constraint for the modelling of damping rates. While it is difficult to settle the issue
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Fig. 9.3 Top: Measured
mode linewidths versus Teff
for the red giants
(Teff < 5000 K) and for the
main-sequence stars
(Teff > 5000 K) observed by
CoRoT [10]. From [10].
Bottom: Average mode
linewidth at maximum mode
height (and their 3-σ error
bars) as a function of effective
temperature, for sub-giant and
main-sequence stars observed
by Kepler [4]. From [4]

of the dominant contribution for the Sun, this relation permits us a significant in-
sight elsewhere. A striking example concerns the contribution of turbulent viscosity
to mode damping rates that had long been thought to be a dominant contribution
[37, 39]. To investigate it, let us start with its integral expression, given by [37, 46],

η ∝ 1

3I

∫

dmνt

∣
∣
∣
∣
r

d

dr

(
ξr

r

)∣
∣
∣
∣

2

, (9.36)

where νt is the turbulent viscosity. The simplest description of νt is based on the
concept of eddy viscosity. This involves assuming that νt ∝ u0Λ, where u0 is the
largest eddy velocity, and Λ the largest eddy size. It can be shown that Eq. (9.36)
can be simplified [60] to

η ∝
(
ωosc

cs

)2

Λu0. (9.37)

To go further, one must express the velocity u0 as a function of stellar parameters.
To this end, we note that the kinetic energy flux Fkin is roughly proportional to
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the convective flux Fconv, which can further be approximated to be the total flux
(Fconv ≈ Ftot ∝ T 4

eff). Therefore,

u0 ∝ T 4/3ρ
−1/3
s , (9.38)

where ρs is the surface density.
The last step is to describe the surface density, which does not scale with the

mean density. To this end, we note that the optical depth can be approximated by
τ ≈ ρκHp , where κ is the mean opacity. For low-mass stars, κ is dominated by
H− opacity such that κ ∝ ρ1/2T 9. Then considering that in the photosphere τ =
2/3, this latter scaling, together with Eqs. (9.38) and (9.49), permits us to express
Eq. (9.37) as

η ∝ T 2.5g3/2. (9.39)

From Eq. (9.39) it turns out that the damping rates related to turbulent viscosity
exhibit a dependence with effective temperature that is very different from those
derived from the observations (Fig. 9.3). Therefore, this result supports that the
damping from turbulent viscosity is not the dominant contribution. This result fur-
ther illustrates that scaling relations of mode damping rates are a powerful tool in
obtaining important constraints on the underlying physical mechanisms governing
mode linewidths. Moreover, as we will show below, this provides a way to validate
their modelling.

A full computation of damping rates and a subsequent comparison with observa-
tions has been recently performed by [21]. Among several formalisms, we uses the
description proposed by [42], which includes the time-dependent convection (TDC)
treatment [21]. The results of this computation are summarised in Fig. 9.4. It can be
seen that there is an overall agreement between the theoretical computations and the
CoRoT and Kepler observations to an accuracy of observational error. This overall
agreement with both CoRoT and Kepler observations demonstrates that the main
physical picture is well reproduced by modelling.

9.3.1.2 Towards an Improved Scaling Relation

While a full computation of mode damping rates reproduces the observations, the
dependence of η on the effective temperature with such a large exponent is far to be
obvious. Hence, to get more insight into this relation, let us distinguish between the
effect of the inertia and the work integral (see Eq. (9.35)). For the latter, it is useful
to consider Eq. (9.31) which exhibits two terms related to the non-adiabatic part of
the total pressure and the turbulent pressure. Since these correspond to a transfer of
energy between the pulsation and convection, it can be assumed at first glance that
the work integral scales dimensionally with the ratio L/M . As verified by [21], it
follows that the relation

ηI ∝
(
L

M

)2.7

(9.40)
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Fig. 9.4 Mode linewidths (normalised by the solar value, Γsun = 0.95 µHz) versus effective tem-
perature. The squared symbols represent theoretical calculations computed as explained in [21].
The triangles correspond to the observations of main-sequence stars derived by [4] from the Ke-
pler data (with their 3-σ error-bars). The dots correspond to the observations of red giants (with
Teff < 5200 K) and main-sequence (with Teff > 5200 K, with their 3-σ error-bars) stars as derived
by [10, 11] from the CoRoT data

holds. In contrast, mode inertia (I ) does not depend on mode energy leakage but
rather on the star’s static structure and, more precisely, on the properties of its upper-
most layers. Hence, one can expect mode inertia to scale with the surface gravity.4

More precisely, it has been shown in [21] that

I ∝ g−2.4. (9.41)

Using Eqs. (9.40) and (9.41), it turns out that

η ∝ T 10.8
eff g

−0.3. (9.42)

Such a crude analysis is unable to reproduce the precise shape of the mode line-
width with effective temperature. However, it does allow us to explain qualitatively
the strong dependence of mode damping rates on effective temperature.

9.3.2 Relation Between νmax and νc

It has been conjectured by [23] that the frequency of the maximum of the power
spectrum (νmax) scales as the cut-off frequency νc, because the latter corresponds
to a typical time scale of the atmosphere. The recent discovery of many stars with
solar-like oscillations has confirmed this relation (e.g., [12, 71]). This relation has
been theoretically explained by [19].

4Note that mode inertia also scales with the dynamical time scale
√
(GM/R3) with almost the

same dispersion as for the surface gravity.
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9.3.2.1 Maximum of the Power Spectrum

As a first step towards an understanding, one must determine which of the damping
rate and the excitation rate is mainly responsible for the maximum of power in the
observed spectra. Thus, we introduce the height of the mode profile in the power
spectrum, which is an observable, as [15, 25]

H = P

2η2M
, (9.43)

where M is the mode mass defined as the ratio I/|ξ |2.
It is useful to express H in a form that does not explicitly depend on the mode

mass (M ). To this end, we note that both the excitation P and the damping rate
η are inversely proportional to the mode mass. Hence, to separate the effect of the
driving and damping from the effect of mode mass, we introduce the quantitiesΠ =
PM and Θ = ηM , both independent of mode masses. Then, using Eq. (9.43), the
expression of the mode height becomes

H = Π

2Θ2
. (9.44)

From Eq. (9.44) it turns out that the maximum of H is determined by the minimum
of Θ2 and corresponds to the plateau of the line widths. In other words, the depres-
sion (also named plateau) of the damping rates η is responsible for the presence of
a maximum in the power spectrum, in agreement with [26]. This result is confirmed
for the Sun by the GOLF observations [19] and more recently for solar-like stars by
Kepler observations [4].

Therefore, the pertinent issue is to determine the origin of the plateau of the
damping rates in order to settle the physical origin of the maximum of H and so
that of νmax.

9.3.2.2 Depression of the Damping Rates

Reference [6] first mentioned that the depression of the solar damping rates origi-
nates in a destabilising effect in the super-adiabatic layer. He also stressed that the
plateau of the damping rates occurs when there is a resonance between the thermal
time scale and the modal frequency. This result has been confirmed by [19] using
the formalism described in Sect. 9.2.2. The mechanism responsible for the destabil-
ising effect is therefore the Lagrangian perturbation of entropy (δS) that exhibits a
rapid variation mainly in the super-adiabatic layers and in the atmospheric layers.

Reference [19] also proposed a simplified model to illustrate the role played by
the entropy fluctuations. In the limit of highly non-adiabatic solution, the perturba-
tions of both radiative and convective luminosities are dominated by perturbations
of entropy. This leads to a second-order equation for the entropy perturbations δS
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that can further be reduced to one of first-order by considering dδL/dr ≈ δL/Hp .
It was found then that

d

d lnT

(
δS

cv

)

+ λ
(
δS

cv

)

= 0 with λ=A − iB, (9.45)

where cv = (∂U/∂T )ρ with U the internal energy, A is given by Eq. (8) of [19],
and B defined by

B =Q

[

1+ (ψ − 1)
Lc

L

]−1

, (9.46)

where κT = (∂ lnκ/∂ lnT )ρ , Lc , and LR are the convective and radiative luminosity
respectively, T the temperature, and ψ is defined by Eq. (A.8) of [19]. We defined
the ratio Q such as

Q = ωoscτ with τ−1 = L

4πr2ρcvT Hp
= τ−1

conv + τ−1
rad (9.47)

with τ a local thermal time scale and τrad and τconv the radiative and convective
thermal time scales, respectively.

From Eq. (9.45), the oscillatory part of (δS/cv) is proportional to
exp[−i

∫

B d lnT ] in the super-adiabatic layers. Depending on the coefficient Q,
the contribution from the entropy fluctuations to the damping rates will compensate
for the contribution from the turbulent pressure (see Eq. (9.34) and Fig. 9.2). As
shown by [19], a minimal damping is then obtained for Q � 1, where the destabil-
ising contribution (from δS) nearly, but not completely, compensates for the strong
damping of those layers below the super adiabatic (from δPturb).

9.3.2.3 Relation Between the Cut-Off Frequency and the Thermal Frequency

From the deliberations of the previous section we see that the maximum of H (con-
sequently, νmax) occurs at the resonance Q � 1. Hence, from Eq. (9.47) one derives
the resonance condition

νmax � 1

2πτ
. (9.48)

Further, using the mixing-length formalism, it has been shown [19] that there
is a linear relation between 1/τ and the cut-off frequency (νc). From Fig. 9.5, the
relation between the thermal frequency (1/τ ) and the cut-off frequency (νc) is close
to linear, but still shows a significant dispersion for main-sequence stars, related
to the dependence of 1/τ on the Mach number. Indeed, using the mixing-length
formalism, it is possible to show that

νmax ∝ 1

τ
∝

(
M 3
a

α

)

νc, (9.49)
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Fig. 9.5 Thermal frequency
(1/τ ) versus the cut-off
frequency (computed as the
ratio cs/(2Hp)), normalised
to the solar values, for models
with masses ranging from
M = 1.0M�, M = 1.2M�,
and M = 1.4M� from the
ZAMS to the ascending
vertical branch. The inputs
physics of the models can be
found in [19]

where Ma is the turbulent Mach number, and α the mixing-length parameter. From
Eq. (9.49) we then conclude that the observed relation between νmax and νc is indeed
the result of the resonance between νmax and 1/τ , as well as the relation between
1/τ and νc.

9.3.3 Mode Amplitudes Across the HR Diagram

In this section, we consider the relations between mode amplitudes, in terms of both
velocity and intensity fluctuations. These provide information on turbulent convec-
tion, mode physics, and stellar structure.

9.3.3.1 Theoretical Scaling Law in Terms of Mode Surface Velocity

On the basis of the theoretical calculations of [28, 45] have derived the first example
of a scaling law given in terms of the maximum of the mode surface velocity (here-
after Vmax). This scaling law predicts that Vmax varies as the ratio (L/M)s with
a slope s � 1. The theoretical calculations of [28] were based on the assumption
that there is an equipartition between the energy carried by the most energetic ed-
dies and the modes. As mentioned by [17] and [60], a necessary (but not sufficient)
condition for having such equipartition is that turbulent viscosity is the dominant
source of damping. However, there is currently no consensus as to the dominant
physical processes contributing to the damping of p-modes, and, furthermore, this
assumption is not supported by observations (see Sect. 9.2.2). Following the scaling
proposed by [45], other theoretical scaling laws have been proposed and compared
with ground-based Doppler measurements. We present here the latest such propos-
als by [64] and [68] and compare them with seismic data.

The mean-squared surface velocity of a mode is given by [60]

V 2(νosc, r)= τ(νosc)

2

P(νosc)

M (νosc,r)
, (9.50)
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where τ is the mode life-time (which is equal to the inverse of the mode damping
rate η), r the radius in the atmosphere in which the mode velocity is measured, and
M is the mode mass, which is defined for radial modes by the ratio I/|ξr|2. Note that
the mode mass must, in principle, be evaluated at the layer of the atmosphere where
spectrographs dedicated to stellar seismology are the most sensitive. However, this
layer is not well known [65]. Hence, for sake of simplicity, M is evaluated at the
photosphere (i.e., T = Teff).

For the Sun, the frequency (νmax) at which V reaches a maximum is shown to
coincide with the frequency location of the plateau in the mode life-time τ (see [19]
and Sect. 9.3.1). It was also found by [68] that P , as well as the ratio (P/M ),
peak at this frequency. As a consequence, the existence of a scaling law for Vmax
simply relies on the existence of a scaling law for τmax, Pmax, and Mmax where
τmax, Pmax, and Mmax are respectively the values of τ , P , and M at ν = νmax.
Scaling laws for τmax (i.e., 1/η) have been presented and discussed in Sect. 9.3.1.

So, to derive a scaling relation for Vmax, the first step to make is to determine
a relation between Pmax and Mmax. Reference [64] have established, on the basis
of a small set of 3D models of the surface layers of main-sequence (MS) stars,
that Pmax scales as (L/M)s , where the slope s is found to depend significantly on
the adopted prescription for the frequency factor χk(ω) (see the definition given in
Sect. 9.2.1). A Lorentzian χk(ω) is the more realistic choice [18, 62] and results in
a slope s = 2.6. More recently, this study was extended by [68] to the case of sub-
and red-giant stars. The authors found for Pmax the same scaling law as the one
found for MS.

The dependence of Pmax on L andM can been explained on the basis of simple
theoretical considerations [60]. We first point out that the ratio L/M is equivalent
to the ratio T 4

eff/g. In turn, the dependence on Teff and g can be roughly explained
as follows. We start from Eq. (9.21). Assuming a propagating wave, it is shown
that (dξr/dr)2 = ω2

osc/c
2
s ξ

2
r , where cs is the sound speed. Accordingly, Eq. (9.21)

simplifies to

P ∝ ν
2
osc

I

∫ (
ξr

cs

)2

FkinΛ
4 dm, (9.51)

where νosc = ωosc/(2π). The integrand of Eq. (9.51) is evaluated, for the sake of
simplicity, at a single layer of the surface where mode driving is predominant. This
layer being close to the photosphere, the term Λ4Fkin that appears in the integrand
of Eq. (9.51) is evaluated at the photosphere (i.e., at T = Teff). This yields

P ∝ FkinΛ
4
(
νosc

cs

)2 1

I

∫

dmξ2
r . (9.52)

Finally, with the help of Eq. (9.52), the above reduces to

P ∝ FkinΛ
4
(
νosc

cs

)2

. (9.53)
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Fig. 9.6 Maximum of the
mode velocity Vmax as a
function of νmax. The filled
circles correspond to
observations, while the red
squares correspond to the
scaling law given by
Eq. (9.55). For sub- and
reg-giant (νmax � 200 µHz),
we have taken p = 2.0 and
for MS (νmax � 200 µHz)
p = 1.3

As already noticed in Sect. 9.2.2, Fkin scales approximately with the convective
flux Fc , which is proportional to T 4

eff (in the upper part of the convective zone).

We recall that νmax is shown to scale as g/T 1/2
eff and cs as T 1/2

eff (see Sect. 9.3.2.1).
Finally, the characteristic size Λ scales in turn as Teff/g. When we combine all of
these scaling relations in Eq. (9.53), we establish that Pmax scales approximately
as T 6

effg
−2. This crude result then qualitatively explains the theoretical scaling laws

found for Pmax by [64] and [68].
We now turn to Mmax. In [68] it is found that for sub- and red-giant stars, Mmax

scales as (M/R3)−p/2. with p = 2.0±0.1. Accordingly, Mmax scales as the inverse
of the star mean density, i.e., 〈ρ〉 ∝ (M/R3). For MS stars, the calculations per-
formed by [64] yield a different slope, p = 1.3± 0.2. These two different relations
between Mmax and 〈ρ〉 are not yet understood and call for some theoretical support.
When we combine the scaling laws for τmax (see Sect. 9.2.2), Pmax and Mmax, into
Eq. (9.50), we obtain for Vmax the following law:

Vmax ∝ T −5.4
eff g0.15

(
L

M

)1.3(
M

R3

)p/4

. (9.54)

Given the fact that the large separation �ν typically scales as (M/R3)1/2 (e.g.,
[74]), νmax scales as g/T 1/2

eff and that (L/M) is proportional to T 7/2
eff /νmax [10, 11],

Eq. (9.54) can be reformulated to include only the seismic indices νmax and �ν and
Teff:

Vmax ∝ T −0.77
eff ν−1.15

max �νp/2. (9.55)

The scaling law given by Eq. (9.55) is compared in Fig. 9.6 with the ground-based
Doppler velocity measurements obtained to the present. The amplitudes of the solar-
like oscillations measured in MS are rather well reproduced by the theoretical scal-
ing law. This is not the case for the sub- and red-giant stars for which the predictions
are found to be systematically below the observations. We refer the reader to [68]
for a detailed discussion about this discrepancy.
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9.3.3.2 From Velocity to Bolometric Amplitudes

Current space-based missions (CoRoT and Kepler) detect and measure solar-like
oscillations in numerous stars, using methods of high-precision photometry. There-
fore, in order to compare predicted with measured mode amplitudes, it is necessary
to convert mode-velocity amplitudes to intensity amplitudes.

The instantaneous bolometric mode amplitude is deduced at the photosphere ac-
cording to [31, 58]

δL(t)

L
= 4

δTeff(t)

Teff
+ 2

δR∗(t)
R∗

, (9.56)

where δL(t) is the mode Lagrangian (bolometric) luminosity perturbation, δTeff(t)

the effective temperature fluctuation, and δR∗(t) the variation of the stellar radius.
The second term of Eq. (9.56) is negligible compared to δTeff(t), so the rms bolo-
metric amplitudes are given by

(
δL

L

)

rms
= 4

(
δTeff

Teff

)

rms
, (9.57)

where the subscript rms denotes the root mean-square.
We need the relationship between (δTeff/Teff)rms (or equivalently ( δL

L
)rms) and

the rms mode velocity Vrms. To this end, we introduce the dimensionless coefficient
ζ defined by

(
δL

L

)

rms
= 4

(
δTeff

Teff

)

rms
= ζ

(
δL

L

)�

rms

(
Vrms

V�

)

, (9.58)

where ( δL
L
)�rms = 2.53 ± 0.11 ppm is the maximum of the solar bolometric mode

amplitude [53], T �eff = 5777 K the effective temperature of the Sun, and V�rms =
18.5± 1.5 cm/s is the maximum of the solar mode (intrinsic) surface velocity eval-
uated at the photosphere as explained in [66].

Let us now define (δL/L)max to be the maximum of (δL/L)rms. We want to
establish a scaling for (δL/L)max. As seen in Eq. (9.58), we require a scaling law
for ζ since that for Vrms is given by Eq. (9.54) (or equivalently by Eq. (9.55)).
Consistent calculation of ζ requires us to take into account the energy lost by the
pulsation. This can be estimated using a non-adiabatic pulsation code that takes into
account coupling between oscillation, radiation, and turbulent convection (as de-
scribed in Sect. 9.2.2). Due to the difficulties of consistently treating the underlying
mechanisms, the use of the quasi-adiabatic relation has been proposed by [45] and
is adopted for converting mode surface velocity into intensity amplitude. Indeed,
adopting quasi-adiabatic pulsation and assuming an isothermal atmosphere,5 one

5A more sophisticated quasi-adiabatic approach has been proposed by [69]. These authors go be-
yond the approximation of isothermal atmosphere by taking into account the temperature gradient
and the fact that the intensity is measured at constant instantaneous optical depth. Both effects are
taken into account by the non-adiabatic pulsation code MAD.
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Fig. 9.7 Maximum of the mode intensity fluctuation (δL/L)max as a function of νmax. The filled
circles located below νmax = 200 µHz correspond to the seismic measures performed by [10, 11]
on a large number of CoRoT red-giant stars, while those located above νmax = 200 µHz correspond
to the MS stars observed so far by CoRoT [10, 11]. The red squares are the theoretical amplitudes
obtained with the adiabatic scaling law of Eq. (9.60), while the blue diamonds to those computed
on the basis of the non-adiabatic scaling law given by Eq. (9.62)

can easily relate mode surface velocity to intensity perturbations (e.g., [45]). These
approximations yield the following simple expression for ζ [45]:

ζK95 =
√

T �eff

Teff
. (9.59)

Derivation of Eq. (9.59) supposes that the modes propagate at the surface where they
are measured. However, the acoustic modes are evanescent at the surface. Combin-
ing Eqs. (9.59) and (9.58) gives for (δL/L)max the (quasi)-adiabatic scaling law:

(δL/L)max ∝ T −0.5
eff Vmax, (9.60)

where the scaling law of Vmax is given by Eq. (9.55).
Bolometric mode amplitudes computed on the basis of Eq. (9.60) are compared

with the bolometric mode amplitudes measured by [10, 11] on a set of CoRoT red-
giant stars in Fig. 9.7. The adiabatic relation of Eq. (9.60) results, for red-giant stars,
in a significant under-estimation compared to the CoRoT seismic data.

Reference [68] have computed the coefficient ζ (see Eq. (9.58)) using the MAD
non-adiabatic pulsation code [42] and established that, for sub- and red-giants, ζ
scales as

ζnad = ζ0
(
L

L�
M�
M

)0.25

, (9.61)

where ζ0 = 0.59. The increase of ζ with the ratio L/M is not surprising. Indeed, en-
ergy losses scale dimensionally as L/M . Red-giants stars are characterised by high
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luminosities. As a consequence, we expect, for red-giants, large differences between
ζnad and ζK95. We recall that L/M is proportional to T 7/2

eff /νmax. Accordingly, sub-
stituting Eq. (9.61) into Eq. (9.58) yields, for (δL/L)max, the non-adiabatic scaling
law6

(δL/L)max ∝ T 0.875
eff ν−0.25

max Vmax , (9.62)

where Vmax is given by Eq. (9.55) with p = 2. This scaling law is compared in
Fig. 9.7 with CoRoT observations. As seen in the figure, the differences that were
found between the adiabatic scaling law and the CoRoT observations are reduced
using the non-adiabatic scaling law. However, the remaining differences are still
important. Their possible origins are discussed in [68].

9.4 Concluding Remarks

We have presented the state-of-the-art in the modelling of the physical processes
of both driving and damping of solar-like modes with particular emphasis on the
connections between pulsation and convection. We have shown that most of the
observed scaling relations between asteroseismic quantities and stellar parameters
are related to these connections.

This era of asteroseismology (also named ensemble asteroseismology) is only
beginning, but has already shown great promise in providing information on tur-
bulent convection properties. As a result, one can expect to be able to infer from
studying mode amplitudes (including both driving and damping processes) these
properties in stars from the main-sequence to red-giant phase.

Last, but not least, scaling relations are expected to provide us a model-
independent and accurate determination of stellar parameters for a large set of stars,
up to now impossible using classical methods. Actually, combining the scaling laws
established for η, νmax, and�ν gives us access, at least in principle, to the mass, the
radius, and the effective temperature of a star using only seismic data, i.e., without
the help of spectroscopic measurements or stellar models. Although the scaling re-
lations associated with νmax and �ν are now rather well established and accepted,
those for η still require investigations. Furthermore, all of these scaling laws ig-
nore the influence of the abundance of surface metal, which has, for instance, been
shown to have an important influence on mode amplitude [44, 66, 67]. As shown by
[19], the relation between νmax and νc involves the turbulent Mach number, which
is expected to depend on surface metal abundance [67]. Therefore, most of the dis-
persion seen in the observational data may well have a physical origin such as metal
abundances.

Thus, a major effort towards a full understanding of the physical mechanisms
governing mode physics is required. This is the keystone of an accurate determina-
tion of stellar parameters across a wide range of stars, a prospect anticipated keenly
in large domains of astrophysics ranging from cosmology to investigations of galac-
tic structure and evolution.

6This scaling is only valid for sub- and red-giant stars.
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Chapter 10
Semi-convection: What Is the Underlying
Physical Context?

A. Noels

Abstract Stellar conditions leading to a possible semi-convective mixing are dis-
cussed in three relevant cases: (1) low-mass MS stars in which the CNO cycle takes
progressively the lead over the PP chain due to the increase in temperature as core
hydrogen burning proceeds, (2) massive MS stars which experience a large contri-
bution of the radiation pressure to the total pressure, and (3) core-helium-burning
stars for which the production of carbon in the core increases the opacity. A short
discussion of semi-convection in terms of instability of non-radial modes follows.

10.1 Introduction

In main sequence stars massive enough to burn hydrogen through the CNO cycle, a
convective core is already present at the ZAMS. In most cases, its mass extension is
maximum at the ZAMS, and then it shrinks with time due to the decrease in opacity
resulting from the transformation of hydrogen into helium, which rather drastically
reduces the density of free electrons. In such a case, the opacity is larger outside the
convective core in layers which are richer in hydrogen, but as a result of the pro-
gressive decrease in mass extension of the convective core, there is neither chemical
nor opacity discontinuity at the convective border. In some cases however the con-
vective core mass tends to grow as the star evolves, and this leads to the formation
of a hydrogen discontinuity at the border, the outer border being hydrogen richer
and thus more opaque than the inner border. The layers affected by this, although
outside the convective core, are unstable towards convection if the Schwarzschild
criterion [13] is used to define the convective neutrality, i.e.

∇rad =
(

d lnT

d lnP

)

rad
>∇ad = Γ2 − 1

Γ2
(10.1)
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where the ∇rad and ∇ad refer to radiative and adiabatic temperature gradients, and
Γ2 is the second adiabatic coefficient. They however are stable when applying the
Ledoux criterion [9] since

∇rad <∇ad + β

4− 3β

d lnμ

d lnP
(10.2)

where β is the ratio of the gas pressure to the total pressure, and μ is the mean
molecular weight. In a pioneering analysis, Schwarzschild and Härm [14] solved
this problem by adding a partial chemical mixing in the so-called semi-convective
layers in order to ensure their convective neutrality. The helium abundance in these
layers was enriched to just the precise amount required to satisfy the Schwarzschild
criterion. A similar partial mixing was adopted by Sakashita and Hayashi [12] but
with the Ledoux criterion instead.

After recalling a few basic points of stellar structure in Sect. 10.2, I shall discuss
the physical conditions leading to such an increase with time of the convective core
mass, first in low mass stars (Sect. 10.3) and then in massive stars (Sect. 10.4). In
Sect. 10.5, I shall briefly address the problem of semi-convection in helium-burning
stars. Section 10.6 will be devoted to a short discussion in terms of vibrational
stability. My aim is here to emphasize the physical conditions under which semi-
convection may develop, not to describe the modern ways of tackling the problem
nor to present an exhaustive review of the theoretical works done since the 1960s.
These are presented and discussed by Zaussinger, Kupka, and Muthsam in Chap. 11,
to which this constitutes a sort of preamble.

10.2 A Few Basic Points

Let us recall here a few basic points affecting the stellar structure:

Radiative temperature gradient In a simplified way the radiative temperature gra-
dient can be written

∇rad ∼ L
m
κ (10.3)

where L is the luminosity, and κ the opacity. This means that

• a large L/m value typical of nuclear burning cores is favorable to convection.
The larger the temperature sensitivity of the nuclear energy production rate,
the larger the L/m value;
• a large opacity mostly found in ionization zones located in the outer layers

leads to the presence of a convective envelope.

Temperature sensitivity of a nuclear reaction The temperature sensitivity of a non-
resonant nuclear reaction involving the fusion of two nucleons AA and Aa (see
for instance [3]) is given by

ν =
(

d log ε

d logT

)

ρ

(10.4)
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where ε is the nuclear energy production rate, T is the temperature, and + the
density. Its value strongly depends on the Gamow factor b,

b= ZAZaA1/2
μ with Aμ = AAAa

AA +Aa . (10.5)

The ν value is then easily estimated from the relations

ν = τ − 2

3
with τ = 3EG

kT
and EG =

(
bkT

2

)2/3

(10.6)

where k is the Boltzmann constant, and EG is the Gamow energy, i.e. the most
effective energy for the nuclear reaction to take place.

Temperature sensitivity of the PP chain reactions From the relations above it is ev-
ident that the smallest ν value will be obtained for the (11H, 1

1H) reaction. At a
temperature of about 107 K (kT ∼ 1 keV), ν11 is of the order of 4. As soon
as the charge of the nucleons increases as in (32He, 3

2He), the Gamow factor b
drastically increases, and so does the temperature sensitivity. For kT equal to
1 keV, ν33 reaches a value of about 17.

PP chain operating out of equilibrium Near the end of the pre-main sequence
phase when the temperature at the center reaches a value of about 107 K,
the hydrogen-burning nuclear reactions start. In low-mass stars hydrogen
burning is largely dominated by the PP chain. The abundances of the nu-
cleons involved in the PP chain, essentially that of 3

2He, are however still
different from their equilibrium (or more precisely stationary) abundances.
This means that 3

2He is accumulating up to the point where its destruction
rate will equal its formation rate. The temperature sensitivity is given by

νPP = ν11
ε11

ε
+ ν33

ε33

ε
. (10.7)

Due to the high value of ν33, the resulting sensitivity is large, and a con-
vective core appears and remains during the whole process of reaching the
equilibrium abundances.

PP chain operating at equilibrium When 2
1H and 3

2He reach their equilibrium
abundances, i.e. when they are produced and destroyed at exactly the same
rate, the whole PP chain is governed by the (11H, 1

1H) reaction (or pp re-
action). This means that the ν value is low and the L/m ratio is not high
enough to allow the presence of a convective core.

PP chain operating with overshooting If a certain amount of overshooting, or
any other extra mixing, is taken into account above the convective core
boundary, the convective core present before ZAMS can be maintained dur-
ing the whole main sequence phase. This is due to the fact that this extra
mixing prevents 3

2He from reaching its equilibrium abundance whatever the
elapsed time since fresh 3

2He is continuously brought into the core.

Temperature sensitivity of the CNO cycle reactions Whatever the proton capture
reaction involved in the CNO cycle, its sensitivity is high due to the large
value of the Gamow factor. A convective core is present during the whole core
hydrogen-burning phase.
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Temperature sensitivity of the 3α helium-burning reaction The 3α reaction is a res-
onant reaction. Its temperature sensitivity (see [3]) is given by

ν3α = 42.9

T8
− 3 (10.8)

where T8 is the temperature in 108 K. Such large values of ν involve the pres-
ence of a convective helium-burning core in the whole stellar mass domain.

Central temperature of MS stars Assuming hydrostatic equilibrium, thermal equi-
librium, and radiative transfer, a dimensional reasoning easily leads to (see for
instance [8])

T ∼ M
R
∼M1− ν−1

ν+3 (10.9)

where M is the stellar mass, and R is the surface radius. Whatever the way of
burning hydrogen, through PP chain or CNO cycle, the exponent of M is pos-
itive, which means that the central temperature increases with the stellar mass.
This implies a progressive growth of the contribution of CNO in the nuclear
reactions, from PP chain for low-mass stars to CNO cycle in intermediate and
massive stars. Another important effect is the increase of the contribution of the
radiation pressure to the total pressure as the stellar mass increases.

10.3 Semi-convection in Low-Mass Stars

In the mass range 1.0M�–2.0M� the small convective core, present while the PP
chain elements are still reaching their equilibrium values, vanishes on the ZAMS.
As the star evolves, however, the temperature at the center slowly increases, which
leads to a growing contribution of the CNO cycle to the nuclear reactions. The tem-
perature sensitivity increases from a value of about 5 to a larger value typical of
CNO reactions (around 15). A convective core appears, and its mass extension in-
creases as the CNO contribution increases. Figure 10.1 shows the evolution of the
fractional core mass extension with the central hydrogen abundance. This growing
tendency is enhanced when models are computed with overshooting since a convec-
tive core is already present at the ZAMS due to the non-equilibrium values of the
3
2He abundance in the mixed region (see Sect. 10.2).

When models are computed with the Ledoux criterion, such an evolution of
the convective core leads to a well-defined and numerically stable discontinuity at
the convective core boundary, as can be seen in the left panel in Fig. 10.2. This
is not the case where the Schwarzschild criterion is used (see the right panel in
Fig. 10.2) since small convective shells form in the region of varying mean molec-
ular weight (μ-gradient region). The resulting effect is to create nearly neutral
convective conditions in the whole μ-gradient region and to reproduce more or
less the Schwarzschild and Härm solution of the problem of semi-convection (see
Sect. 10.1). The number and the extent of these small convective shells are however
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Fig. 10.1 Fractional
convective core mass as a
function of central hydrogen
abundance Xc for models in
the mass range
1.0M�–2.0M� computed
without and with
overshooting. The
overshooting parameter β
(ratio of the overshooting
distance and the minimum
between the convective core
radius and the local pressure
scale height) is indicated in
each panel. (From [10])

dependent on the number of mesh points in the model in a somewhat erratic way. Al-
though rather tempting, this solution is dangerous especially because of the potential
numerical diffusion induced by these moving convective layers. The mass domain
of stars affected by this semi-convective problem is limited to 1.0M�–2.0M�, and
the duration of the phase itself is only a small fraction of the main sequence lifetime
since those intermediate convective zones appear mostly near the maximum extent
of the convective core.

For intermediate-mass stars more massive than 2.0M�, the problem of semi-
convection disappears since hydrogen burning is dominated by the CNO cycle al-
ready at the ZAMS, and as the evolution proceeds, the temperature sensitivity does
not change significantly. Since the hydrogen abundance X decreases in the con-

Fig. 10.2 Hydrogen profile in models of 1.3M� (X = 0.70, Z = 0.02) computed with the Ledoux
criterion (left panel) and with the Schwarzschild criterion (right panel) in the fractional mass in-
terval [0,0.2]
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Fig. 10.3 Radiative and adiabatic temperature gradient distributions (left panel) and hydrogen
profile (right panel) in models of 3M� (X = 0.70, Z = 0.02) during MS. (From [11])

vective core, ∇rad decreases accordingly (see Fig. 10.3), and the μ-gradient region
forms a smooth transition between the convective core and the homogeneous enve-
lope.

10.4 Semi-convection in Massive Stars

Another problem arises for stellar masses larger than about 15M�. As recalled in
Sect. 10.2, the radiation pressure becomes a larger and larger contributor to the
total pressure as the stellar mass increases. The resulting effect is a decrease of the
adiabatic temperature gradient due to a progressive decrease of Γ2 from 5/3 to 4/3
as β (see Sect. 10.2) varies from 1 to 0. This effect favors convection and thus a
larger mass extension of the convective core as M increases. As hydrogen burning
proceeds, the core mass extension decreases, but ∇rad and ∇ad are extremely close
to one another in the μ-gradient region. With the Ledoux criterion, the steepness
of the μ-gradient is such that the layers remain stable toward convection. On the
contrary, when adopting the Schwarzschild criterion, small convective shells appear
in μ-gradient region. This is illustrated in Fig. 10.4 where the X profile, ∇rad and
∇ad are shown in the left and the right panels for a typical model (Xc = 0.20) of a
MS 15M� computed with the Ledoux and Schwarzschild criterions, respectively.

Near the end of core hydrogen burning, a small convective zone appears at the
base of the homogeneous envelope in models computed with the Ledoux criterion.
This does not affect the μ-gradient profile, which remains perfectly smooth with
well-defined junctions with the convective core and the homogeneous envelope
plateaus during the whole MS. In models computed with the Schwarzschild cri-
terion, on the contrary, the somewhat erratic behavior of transient convective shells
leads to a step behavior of theX profile, whose precise form depends on the adopted
number of mesh points. The near equality of ∇rad and ∇ad in the μ-gradient region
tends to mimic the treatment of semi-convection advocated by [14].



10 Semi-convection: What Is the Underlying Physical Context? 215

Fig. 10.4 Hydrogen profile (dashed line), ∇rad (full line) and ∇ad (dotted line) for an MS model
with Xc = 0.20 computed with the Ledoux criterion (left panel) and with the Schwarzschild crite-
rion (right panel) in a sequence of 15M� MS (X = 0.70, Z = 0.02)

As the mass increases (M ≥ 30M�), the problem becomes more and more crucial
since the mass extension of the convective cores even grows with time during the
MS. The resulting discontinuity in X at the convective core boundary leads to a
situation somewhat similar to that discussed in Sect. 10.3.

10.5 Semi-convection in Helium-Burning Stars

In models of core helium-burning massive stars the radiative opacity is dominated
by electron scattering and is thus insensitive to the change in chemical composition
produced by the transformation of helium into heavier α-elements. This is not the
case however for models burning helium at lower temperature and higher density as
it is found in intermediate- and low-mass stars. The opacity of free–free transitions
depending on the charge of the ion is larger in carbon rich mixture than in helium
richer ones. This is illustrated in the left panel of Fig. 10.6 taken from [2].

Core-helium-burning stars all have a convective core as discussed in Sect. 10.2.
As a result of the transformation of helium into carbon leading to a larger opacity,
the radiative temperature gradient increases in the convective core, while it remains
nearly constant just outside the convective boundary since the chemical composition
is there unchanged. A discontinuity in ∇rad tends to form at the core boundary as
can be seen in Fig. 10.5, where ∇rad, ∇ad and the helium profile as functions of the
fractional mass [0,0.3] are given for a model of 4M� (left panel) and 8M� (right
panel) in the core-helium-burning phase.

As discussed in [2], such a convective boundary is unstable since mixing a radia-
tive layer close to the boundary with the homogeneous matter within the convective
core enhances the carbon content in the layer and makes it unstable toward con-
vection. A sort of overshooting called by [2] a self driving mechanism leads to the
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Fig. 10.5 Helium profile (dashed line), ∇rad (full line) and ∇ad (dotted line) as functions of the
fractional mass [0,0.3] in models of 4M� (left panel) and 8M� (right panel) during core helium
burning. A discontinuity in ∇rad is visible at the boundary of the convective core

extension of the core up to a layer for which the Schwarzschild criterion is satisfied
with the chemical composition of the convective core. This progressive outward
shift of the core boundary meets however a new difficulty which was first analyzed
in [1]. The mass distribution of ∇rad indeed presents a minimum before reaching
the boundary. Whether ∇rad increases or decreases with time, the existence of this
minimum prevents a coherency in the determination of the convective boundary, as
can be seen in the top and middle graphs in the right panel in Fig. 10.6. The bottom
graph shows the resulting induced semi-convection as proposed in [1].

10.6 Discussion in Terms of Vibrational Stability

I very briefly discuss here some earlier works on the stability aspects relevant to
semi-convection. Classical convection is due to a dynamical instability of g− modes,
while overstable convection present in layers of varying mean molecular weight
results from a vibrational instability of dynamically stable g+ modes trapped in the
μ-gradient region [7]. The physical structures discussed in the above sections are
generally favorable to the existence of such trapped g+ modes. It is thus tempting to
interpret a semi-convective mixing as a mixing resulting from the instability of these
g+ modes. The precise nature of the mixing is however far from straightforward.
Since the destabilizing term tends to vanish when ∇rad and ∇ad are equal, it would
be safe to say that a mixing tending to this equality would lead to a stable situation.
Another mechanism acting in massive stars was proposed by [4], who showed that
transient convective shells would progressively move across and partially mix the
μ-gradient region until the Schwarzschild neutrality condition is met.

As already noted in Sect. 10.1, attempts have however been made by numerous
stellar evolution scientists at forming semi-mixed regions either neutral toward the
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Fig. 10.6 Ratio of opacities in a pure carbon and a pure helium matter as a function of the loga-
rithm of the density for labeled values of the temperature expressed in 108 K (left panel; from [2]).
Mass distribution of ∇rad and ∇ad illustrating the problem of the minimum in ∇rad during core
helium burning (right panel; from [1]). In the top and middle graphs, ∇rad increases and decreases
with time, respectively. The induced semi-convective mixing is shown in the bottom graph

Schwarzschild or toward the Ledoux criterion. As pointed by Ledoux [9], adopting
the Schwarzschild criterion as a neutrality condition in a semi-convective region has
the advantage of leading to a dynamically stable situation, while the Ledoux crite-
rion leads to marginally dynamically unstable conditions which would inevitably
lead to a full convective mixing. Ledoux was indeed the first to advocate in this
context the use of the Schwarzschild criterion and not the Ledoux criterion as a
neutrality condition in semi-convective zones.

Even trapped modes must be checked through a full stability analysis. In the
case of massive MS stars, [5] showed that low-order g+ modes of high spherical
harmonic degree could be trapped in the μ-gradient region. The timescales were
found to be of the order of 103 to 104 years, which made them good candidates for
a partial semi-convective mixing.

For low-mass MS stars, a similar analysis was performed [6] and unstable trapped
low-order g+ modes of high degree were also found. A very narrow mass range near
1.1M� was however affected by this instability. Moreover, unstable modes were
only found during a short part of the main sequence phase near the maximum extent
of the convective core.

Although it is impossible to draw a full picture of semi-convection from these
stability analyses, it is interesting to point out that they seem to converge toward a
partial chemical mixing of the semi-convective layers ensuring their being neutral
with respect to the Schwarzschild criterion.
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Chapter 11
Semi-convection

F. Zaussinger, F. Kupka, and H.J. Muthsam

Abstract Double-diffusive processes play an important role in various astrophys-
ical and geophysical systems. Especially the case which considers a thermally un-
stable configuration stabilized by mean molecular weight and which is known as
semi-convection has been studied for several decades. Whether a semi-convective
region in a star should be treated layered or fully mixed has not yet been conclu-
sively answered. However, in recent years numerical simulations have been used
to investigate this fluid dynamical instability. With high resolution methods we can
now develop a better understanding of this mixing process. For this review our inten-
tion is to present semi-convection from different points of view. At first, a summary
of studies made during the last decades is used to demonstrate the continuous impor-
tance of semi- convection for stellar evolution. The physical process itself as well
as linear stability criteria are explained subsequently. Finally, models, experiments,
and the study through numerical simulations are discussed. Semi-convective mix-
ing and related questions in stellar evolution and, recently, also in exoplanet science
continue to be a vivid research field and have never ceased to surprise.

11.1 Introduction

The physical process known as semi-convection1 was discovered in the early days
of modelling of stellar structure and evolution, when in the 1950s it became fea-

1Both notations, semi-convection and semiconvection, are equivalent.
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sible to compute detailed stellar models, in particular for stars other than the Sun
(see Schwarzschild and Härm [39]). Under conditions which are characterized by
the term weak mixing, it can occur that neither thermal convection nor a strong
shear flow are able to mix the fluid on short, hydrodynamical timescales. Despite
this long history, the accurate physical modelling of semi-convection is still consid-
ered an unsolved problem. Many models for this process have been proposed, but
for a long time, astrophysical tests thereof have been too indirect, and hydrodynam-
ical simulations too expensive; thus, solid conclusions remained beyond reach. The
situation is now changing with the increasing capabilities of asteroseismology and
large, high-precision surveys on the one hand and advanced numerical techniques
and ever more powerful supercomputers on the other. Semi-convection models are at
last becoming subject to sufficiently thorough and direct tests to draw well-founded
conclusions on their validity.

In this review, due to lack of space, we cannot give a complete survey of the entire
literature on the subject, nor explain the differences between all of those models of
semi-convection which have been proposed. We rather aim at explaining some of the
major discoveries and conclusions valid beyond the limitations of specific models.
In the following we hence begin with a discussion of the role semi-convection plays
in stellar evolution, its discovery, the first attempts of modelling it, and attempts
to verify, or rather falsify, those models with astrophysical data. A discussion of
the undecided situation encountered in current modelling concludes the section on
the meaning of semi-convection for stellar evolution. This section is followed by a
discussion of the physics of semi-convection as a double-diffusive mixing process.
We then explain some of the main physical quantities used in its modelling. In the
next part we discuss some more advanced models and in particular some conclusions
which can be drawn from them independently of the modelling details. Thereafter
we turn to experiments and numerical hydrodynamical simulations which are now
becoming an important tool in probing the physics and the quantitative predictions
of semi-convection models. A final section presents some conclusions on the current
evolution of the field, in particular with respect to the interest awakening in semi-
convection in the neighbouring field of exoplanet science and with respect to the
possibilities opened by the advancement of hydrodynamical simulations.

11.2 The Meaning of Semi-convection for Stellar Evolution

The first thorough analysis of the stability of the stratification inside a star under
conditions such that a gradient in mean molecular weight μ competes with a gradi-
ent in temperature T was given by Ledoux [30]. From his analysis it followed that
a sufficiently steep mean molecular weight gradient ∇μ = d lnμ/d lnP could actu-
ally overpower the convective instability expected from the usual Schwarzschild
criterion [38]. In modern notation the latter demands the logarithmic tempera-
ture gradient to be steeper than the adiabatic one, d lnT/d lnP = ∇ > ∇ad =
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(∂ lnT/∂ lnP)ad, in order for convection to occur. According to the Ledoux cri-
terion, convection may still be suppressed if

∇μ >∇ −∇ad > 0, (11.1)

where ∇ > ∇ad implies unstable stratification with respect to T (r) in the sense of
[38] (r is taken to be the stellar radius), but ∇μ > 0 implies stable stratification with
respect to μ(r), whereas, most importantly, ∇μ >∇ −∇ad holds as well. The nota-
tion used here assumes a perfect gas equation of state. In general, one has to consider
(ϕ/δ)∇μ with ϕ = (∂ lnρ/∂ lnμ) and δ =−(∂ lnρ/∂ lnT ) instead of ∇μ in (11.1)
(see, e.g., [21]). Ever since this result was published, the issue of whether to apply
the Ledoux criterion or the Schwarzschild criterion of convective instability in mod-
els of stellar structure and evolution has been a topic of debate among astrophysi-
cists. This is important because the Schwarzschild criterion predicts a larger region
of the star to be mixed, and thus of homogeneous composition, than the Ledoux cri-
terion. As a result, the two criteria can lead to different predictions for the evolution
of a star during later stages.

The discussion became more complex with the work of Schwarzschild and
Härm [39]. They found that for massive stars, convection could be so slow that
it would transport only a small amount of energy, but nevertheless it could lead to
a homogeneous composition in the intermediate layer between the convective core
and the radiative envelope. This slow mixing process was termed ‘semi-convection’.
What made that scenario particularly difficult to model was the role of opacity and
thus of radiative diffusivity in their models of massive stars along the main sequence.
Both are functions of chemical composition. Since the dominating source of opacity
in that physical regime is electron scattering and since hydrogen has a larger number
of electrons per nucleon than helium, the hydrogen-rich material further outwards is
actually more opaque than the helium-rich material further inwards. For that reason,
the less well mixed material has a lower radiative conductivity, and the (radiative)
diffusion process counteracts the stability implied by (11.1). The Ledoux criterion
hence cannot be used on its own to determine if, or how well, a region is mixed:
a more detailed model is needed.

Thus, in addition to the dimensionless gradients ∇μ, ∇ , and ∇ad, the diffusivities
play a key role in the stability of a stratification. In the case considered by [39], the
thermal (radiative) diffusion κT is able to undermine the stability of the stratification
expected according to (11.1) near the boundary of the convective core of a massive
star because it operates on shorter time scales than the diffusion of concentration,
or more precisely of helium, since κT � κHe. For that reason, semi-convection is
considered a double-diffusive processes, as the interplay between two diffusivities
and their associated gradients determines whether and how rapidly a fluid is mixed
and how efficiently heat is transported within it under such conditions.

During the same era, double-diffusive processes also began to gather attention
in oceanography where κT � κsalt plays the same role as κT � κHe does in stars
and where the gradients of temperature ∇T and salinity ∇S compete with each
other. In oceanography semi-convection is usually termed diffusive convection (see
Canuto [5] for further references). However, the opposite case of semi-convection,
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where a mean molecular weight gradient destabilises a stratification which is stable
with respect to its temperature gradient, i.e. ∇ < ∇ad but ∇μ < 0, has traditionally
attracted more attention in oceanography. It is known under the name thermohaline
convection since the first theoretical analysis by Stern [42], although later on it has
often been referred to by the name for a special case thereof, i.e. salt-fingers. The
latter name is also commonly used in astrophysics irrespectively of the parameter
region encountered as soon as ∇ <∇ad and ∇μ < 0. In stars, the ‘fingers’, of course,
consist of a plasma which itself is a mixture of mostly hydrogen and helium or of
helium and carbon, for example. A detailed linear stability analysis, which includes
the diffusivities and local gradients and which can distinguish between different
regimes of stability and instability, was developed in oceanography [1, 43, 56]. This
analysis can also be applied to semi-convection and even to the case where a mag-
netic field is present as well [44]. Astrophysical scenarios where the equivalent of
‘thermohaline convection’ should occur where first identified in [51] for the case
of late stages of off-centre (carbon) shell burning and for the case of accretion of
heavier material onto a stellar surface [49], an idea revived after the discovery of
very short period exoplanets (see also the discussion in [55]). After these initial
discoveries only a few models were proposed which model this process under as-
trophysical conditions [22, 53] and which were actually applied in calculations of
stellar structure and evolution (cf. also the recent work of [9, 26, 27]).

Progress on modelling semi-convection remained equally slow. In an early re-
view, Stothers [46] concluded that only two out of ten schemes investigated by him
were physically possible, consistent with astrophysical observations, and were not
contradicted by contemporary laboratory data. One of those two turned out to be the
model already proposed by Schwarzschild and Härm [39]. Among the models sug-
gested more recently which have more commonly been applied to stellar evolution
calculations are those of Langer et al. [28] and Spruit [41], to which we will return
below, and the model by Castellani et al. [7].

Meanwhile, observational data combined with stellar evolution calculations was
used to argue in favour of a very low mixing efficiency of semi-convection as postu-
lated by the Ledoux criterion. Weiss [60] demonstrated that the red supergiant phase
preceding the terminal stage of a blue progenitor of SN 1987A could be recov-
ered if the Ledoux criterion were used for semi-convective regions in a star, while
using the plain Schwarzschild criterion led to an evolutionary track in contradic-
tion to observations. Stothers and Chin [47] investigated the distribution of red and
blue supergiants in the metal-poor cluster NGC 330 in the Small Magellanic Cloud
and concluded that the Ledoux criterion is strongly indicated by the available data.
Stothers and Chin [48] then revisited the case of SN 1987A and considered a further
dozen tests based on galactic stars. While they considered the case of SN 1987A as
too uncertain due to the complexity of the physics describing the progenitor phase,
and another seven of their tests to be indeterminate, five tests favoured the Ledoux
criterion, and three of those five even very strongly, while not a single case favoured
the plain Schwarzschild criterion.

In spite of this, there is no clear preference in the literature in favour of either
criterion or of any of the more detailed models. Heger et al. [14] used the model of
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layered semi-convection by Langer et al. [28] and, for comparison, also the model
by Weaver et al. [58, 59] to produce their evolutionary tracks of supernova progeni-
tor models. In turn, the model of Spruit [41] was used by Umeda and Nomoto [54]
in their study of the 56Ni production in core-collapse supernovae. On the other
hand, Hirschi et al. [15] produced supernova progenitor models based on the plain
Schwarzschild criterion with core overshooting for the hydrogen and helium burn-
ing phases of stars. They also provided some comparisons with models from the
literature which treat semi-convection in different ways. However, since other input
physics also varied in these models, strong conclusions on semi-convection cannot
be drawn from their work. Likewise, Bertelli et al. [2] continued to use the model
by Castellani et al. [7] emphasizing that semi-convection was of greater importance
for the He burning phase than for the H burning phase.

Reducing these modelling uncertainties requires progress both with respect to
observational data and to the way semi-convection is modelled. Asteroseismology
now has reached a state where its results can be considered for constraining semi-
convection even in stars of lower mass (Silva Aguirre et al. [40]). At the same time,
physically more complete models are needed, and these have to be supplemented
by numerical simulations, since laboratory experiments can only reach a limited
parameter space.

11.3 The Double-Diffusive Mixing Process

We now discuss the physics of semi-convective mixing in more detail. As already
mentioned, semi-convection is an example of double-diffusive convection. It is a
multi-component fluid mixing process, and geophysical examples have been stud-
ied as long as have astrophysical ones, for example, the layering observed in salt
lakes. Quite a few cases are known on earth where layering is taking place as part of
double-diffusive convection. For instance, the East African rift Lake Kivu is char-
acterized by steep staircases in dissolved gases like CO2 and CH4, with an average
height of the mixed layers of h= 48 cm. See Schmidt et al. [37] for further informa-
tion on the layering process in this lake. In the 1970s and 1980s of the last century
Huppert and Turner [17] first investigated double-diffusive convection with labo-
ratory experiments. Hereupon a broad range of experiments in different research
fields followed. An interesting application of laboratory experiments are saline so-
lar ponds, which are still used as energy source in coastal regions [50]. A typical
solar pond consists of three layers, namely a mixed fresh water upper layer, a stably
stratified salty middle layer and a semi-convective salt rich lower layer. The solar ra-
diation, mainly in the infrared band, is absorbed in the lower semi-convective zone.
The stably stratified middle layer inhibits the energy transport which achieves tem-
peratures of up to 70 °C in the lower layer. Heat exchangers can be used to utilise the
thermal energy source. A ‘do it yourself’ laboratory experiment is the coffee cup.
Full-fat milk poured gently into a cup of hot coffee leads to a typical semi-convective
layer formation after some minutes. However, the often mentioned Latte Macchiato
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Fig. 11.1 Stability map in
terms of the super adiabatic
gradient ∇ −∇ad and the
mean molecular gradient ∇μ.
Semi-convective mixing is
located in convectively
unstable regions with Rρ > 1

layers form due to a stable density ratio, but this configuration is thermally stable
too. Indeed, their mixing process is double-diffusive but not convectively unstable.

Let us now turn to a more detailed description of the underlying physics of this
process. In the following we define the dimensionless ratio2 Rρ = ∇μ/(∇ − ∇ad)

to measure the stabilising effect of the solute. In the geophysical and incompress-
ible context the stability ratio is defined by Rρ = (βΔS)/(αΔT ), where α and β
are thermal and solute expansion coefficients, respectively. Considering a convec-
tively unstable stratification in terms of the Schwarzschild criterion, ∇ > ∇ad, one
finds two stability regions in the presence of a mean molecular gradient, Rρ < 1
and Rρ > 1. Regions where the superadiabatic gradient is steeper than the mean
molecular weight gradient are not considered here, since in that case the stabilis-
ing influence of the solute is too weak to counteract the convective motion. The
remaining parameter space Rρ > 1 can be rewritten in terms of the Ledoux criterion
(11.1). Figure 11.1 shows the stability map spanned in terms of the gradients ∇ ,
∇ad, and ∇μ. Obviously, the semi-convective and thermohaline parameter space is
limited to a narrow range, which might lead to the assumption that both mixing
processes are rather exceptional cases in nature.

In their compressible form, the hydrodynamic equations, which describe the
double-diffusive mixing process in stars on the main sequence, are based on conser-
vation of the mass ρ, the partial helium density Yρ, the momentum density ρu and
the total energy density ρE. Hereafter, we neglect heavier elements since they do
not contribute much to the stellar element mixture during the hydrogen core burning
phase. The governing equations hence read

2Some authors use the inverse definition of the stability parameter R−1
ρ but refer to the same ratio.
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∂ρ

∂t
=−∇ · [ρu], (11.2)

∂(Yρ)

∂t
=−∇ · [ρu · Y − ρκHe∇Y ], (11.3)

∂(ρu)
∂t
=−∇ · [ρ(u⊗ u)+Π]− ρ∇φ, (11.4)

∂(ρE)

∂t
=−∇ · [u(ρE + P)− kh∇T −∇(πu)

]− ρugz. (11.5)

As usual, the pressure tensor is written asΠ = P1−π , while π denotes the viscos-
ity tensor,

πik = η
(
∂ui

∂xk
+ ∂uk
∂xi
− 2

3
δik∇ · u

)

+ ζ δik∇ · u, (11.6)

where δik denotes the Kronecker delta, η the dynamic viscosity, ζ the bulk or second
viscosity, and kh = κTρcp the thermal conductivity. The gravitational potential is
denoted by φ, and gz is the vertical component of gravitational acceleration. Of
course, the thermodynamic closure changes according to the fluid we consider, but
since our main focus here is on semi-convection in massive stars, the equation of
state for a perfect gas with radiation is a valid approximation [32],

P = RρT

μ
+ 1

3
aT 4. (11.7)

Under the assumption of fully ionized matter, the mean molecular weight becomes
μ= 4(2+ 6X+ Y)−1, where the hydrogen mass fraction X = 1− Y (see [61]).

In particular, the very low values of the Lewis number Le= κHe/κT < 10−9 and
the Prandtl number3 Pr = ν/κT < 10−7 make solving the equations numerically so
as to resolve all relevant scales a challenging task. We will give a detailed view on
the numerical treatment of the equations in Sect. 11.4. In spite of the compressible
formulation of the fluid flow, the Boussinesq approximation is still relevant for small
layer heights. In that context, one has to take into account that the buoyancy depends
on the temperature and the solute, respectively, ρ = ρ0(1−α(T −T0)+β(S−S0)).
Boundary conditions and initial conditions close the set of equations. They depend
mainly on the specific problem and will be discussed in the Sect. 11.4 in more detail.
Closed vertical boundaries in temperature and concentration are commonly imple-
mented for single-layer simulations, while open or periodic conditions are chosen
for layer formation experiments. The influence of the initial stratification of the tem-
perature and the solute on the long-time behaviour is still an unsolved problem. In
fact, for the same input model, the outcome differs significantly for linear, periodic,
or steplike initial stratifications.

Semi-convection belongs to the hydrodynamical class of vibrational instabilities
with growth rates on the thermal diffusion time scale. Pictorially, one might think
of an upwardly displaced fluid blob in a Schwarzschild unstable, but Ledoux sta-
ble, fluid column. The convective unstable situation lets the blob rise, while the

3The Prandtl number Pr is often denoted with σ .
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Fig. 11.2 Vibrational instability for Pr= 0.1, Le= 0.01, and Rρ = 1.15 visualized for the helium
concentration: the growing vibrational instability induces wave braking and the formation of a
convectively mixed zone. Image sequence showing the evolution of the fluid as a function of time
from left to right in consecutive rows

concurrent downward force of the mean molecular weight gradient counteracts this
movement. For Rρ > 1, the downward acceleration generates a force which is larger
than the force due to thermal convection, which results in a net restoring force. Con-
sequently, the fluid element starts to oscillate around the equilibrium state. As long
as the displacement is non-adiabatic, the amplitude of the growth rate rises. Hence,
the thermal diffusion plays a key role in this process. The much lower solute dif-
fusion affects mainly the helium flux, whereupon cross correlations could be im-
portant too. A series of pictures, showing the onset of convection, the oscillatory
phase and the fully evolved convective layer is depicted in Fig. 11.2. This vibra-
tional movement is well observed for an initially linearly stratified temperature and
solute profile. From linear stability analysis, for instance [36, 44, 57], one can ob-
tain that 1 < Rρ < (1 + Pr)/(Le + Pr) for the fluid to be dynamically stable, but
vibrationally unstable. Thus, semi-convection occurs if Rρ > 1 and κT > κHe (i.e.
Le< 1), but in addition, viscosity puts an upper limit on Rρ beyond which only pure
diffusion processes occur (because of vibrational and dynamical stability).

Besides the qualitative description of semi-convection, the effective mixing rates
and the time scales as functions of the Rayleigh, Prandtl, and Lewis numbers and the
stability parameter Rρ are important, and a lot of still-open questions relate to them.
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There are several approaches to deal with those. We consider a semi-convective
stack formed by thin layers.4 The heat and mass transfer through the interfaces is by
diffusion only but additionally depends on the local behaviour of the convectively
mixed intermediate zone. Two methods have been particularly popular to model
the efficient diffusion coefficient Dsc for stellar evolution. Commonly used stellar
evolution codes revert to the models given by an extended mixing length theory
(MLT), for instance, by Langer et al. [28],

Dsc = αsc

6

4caT 3

3κTρcp

∇ −∇ad

∇ad +∇μ −∇ , (11.8)

where the parameter αsc is adjusted to match observations. This diffusion co-
efficient can easily be rewritten in terms of the stability parameter Rρ , namely
Dsc =D(Rρ − 1)−1, where D is mainly a function of αsc. This leads to the conclu-
sion that αsc adjusts the overall semi-convective stability in the considered zone.

In addition to such heuristic kinds of reasoning, numerical simulations have pro-
vided theoretical models since the early 1990s. Two-dimensional simulations of sin-
gle and double layers were first performed first by Merryfield [32] in 1995 with
focus on the vibrational instability and the stability of double layers. Recent three-
dimensional semi-convection simulations are characterized by small Pr and Le, but
are still far away from the relevant stellar parameter space. Even with the next gener-
ation of super computers, it will not be possible to reach Lewis numbers lower than
10−4. Although the hunt for very high-resolution direct numerical simulations has
commenced, one might ask whether such simulations are really necessary, since ex-
trapolations into the relevant parameter space can be done that are based on ‘cheap’
simulations with higher Pr and Le.

Let us outline this in more detail here. Mixing rates are commonly measured
in terms of the total flux Ftot over the diffusive flux Fdiff, i.e. the Nusselt number.
Subsequently, the effective diffusivities κT,eff = κTNuT and κS,eff = κSNuS are ob-
tained. It would be easy to estimate the diffusion timescales by τS =D2/κS,eff and
τT =D2/κT,eff. However, the Nusselt numbers are the relevant quantities to describe
transport and mixing. From linear stability analysis (see [16]) we obtain

NuS = Le−1/2NuT (11.9)

for NuS,NuT� 1, which is in good agreement with numerical simulations and ex-
periments. Thus, in the astrophysical limit we expect an effective helium diffusivity
about four magnitudes higher than the thermal one. There is still disagreement about
how to describe the heat flux in terms of a power law for the semi-convection case,
NuT = αRaβT. Whether α is a function of Rρ , Le, Pr or a constant is still unknown
and a recent field of research. Knowing the values for the exponent β and the role of
α would help us to estimate time scales and mixing efficiencies in semi-convective
zones. The problem of properly choosing these exponents might lead us eventually
to revert to very high-resolution numerical simulations to answer this question.

4This assumption depends on the model and is not general at all.
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11.4 Models, Experiments and Numerical Simulations

We now discuss some of the tools used to facilitate a better physical understand-
ing of semi-convection. At this point a few remarks on the meaning of ‘models’
as used in the following are in order. Astrophysicists usually understand the term
model relating to a simplified description of a very complex system. For this pur-
pose, specific sets of equations are derived either from more fundamental equations,
which are too complex to solve for the given problem, or by heuristic reasoning, or
by a mixture thereof. In the subsection below we deal with models in this sense. On
the other hand, particularly in the community performing detailed hydrodynamical
numerical simulations, the term ‘model’ is used to describe a specific scenario for
which a simulation is performed. This second meaning is usually evident from its
context.

11.4.1 Models

The majority of models of semi-convection which have actively been used in astro-
physics are either derived by heuristic reasoning or inspired by laboratory experi-
ments and field data obtained in oceanography and adopted to the scenario expected
to hold for stars (cf. [7, 8, 28, 39, 41, 46, 58, 59]). While these models have their
merits for very specific applications such as a stellar structure calculation, they can-
not be used to answer physical questions on semi-convection interacting with other
active fields such as a mean flow or a magnetic field.

The one-point closure approach used in Reynolds stress models of turbulent flows
can be used to derive such more general, dynamical equations which describe the
development of statistical parameters, for instance, mean concentration, mean tem-
perature, or root mean square fluctuations of these quantities. This approach was
first applied to stellar astrophysics by Xiong [62, 63], who calculated stellar struc-
ture models of massive stars with a non-local turbulence model based on the down-
gradient assumption (in this case the fluxes of the fluctuations of kinetic energy
around its mean value are approximated, e.g., by a gradient model). The model
in [63] contained dynamical equations for the development of the mean and root
mean square fluctuations of concentration of hydrogen. A similar approach had been
the theoretical basis of a model used in Grossman and Taam [12] to study semi-
convection for stellar conditions. In spite of that, these models were essentially only
ever used by the groups in which they were invented.

The most elaborated model of this type was published by Canuto [4], who
avoided the introduction of a master length scale, which limited the previous non-
local models (of semi-convection). Instead, he resorted to results from a renormal-
isation group approach developed for modelling turbulent flows to close his system
of equations. A more easily applicable variant of this model was given in Canuto [6].
However, the models of [4, 6] have so far been used only in theoretical discus-
sions such as the comparison of the model of [28] in [4] with the new model pre-
sented in that publication. Interestingly, it was stressed in [4, 6] that the correct



11 Semi-convection 229

stability criterion which should replace (11.1) not only has to take into account the
molecular diffusivities κc, κT (and the kinematic viscosity ν), but the turbulent or
effective diffusivities Kc and Kh. These quantities express the combined action of
molecular transport and advective (turbulent) transport and thus require a detailed
convection model. In the end, the stability criterion (11.1) was argued to be re-
placed by

Kh

Kc
(∇ −∇ad) >∇μ >∇ −∇ad (11.10)

for the case Kh/Kc > Rρ > 1 (this implies ∇ − ∇ad > 0). Note that in (11.10)
the turbulent (advective) mixing, present through the ratio Kh/Kc, sets an upper
limit for ∇μ, a feature absent in (11.1). The Ledoux unstable case is expressed
through

(∇ −∇ad) >
Kc

Kh
∇μ, (11.11)

where 1 > Rρ > 0 (and thus also ∇ − ∇ad > 0 and ∇μ > 0). With this frame-
work the problem of ‘choosing’ between the Schwarzschild and Ledoux crite-
ria in models of semi-convection was identified to be a problem of modelling
Kc and Kh, and thus the turbulent fluxes, or, alternatively, the Nusselt numbers
Nuc (i.e. NuS) and NuT, rather than one of ‘choosing the right linear stability
criterion’ (using the Schwarzschild criterion in this case implicitly assumes that
Kh/Kc →∞). Another, important point discussed in Canuto [4–6] is the possi-
bility that linear stability analysis might be misleading when used to model con-
vection in the stably stratified regime (stability defined here with respect to the
temperature gradient). In [5] the problem of a stable temperature gradient com-
peting with a gradient of shear is discussed. For that case, the strength of both
is commonly described by the Richardson number Ri, the ratio of the squares of
buoyancy rate to shear rate. Classical, linear analysis predicts the production of
turbulence be suppressed as soon as Ri > Ricrit = 1/4. However, this linear analy-
sis has been falsified by experiment, as was demonstrated for the ocean by Martin
[31], where the surface layer of the ocean was found to be well mixed and tur-
bulent despite Ri ≈ 4Ricrit ≈O(1). Models that successfully reproduce this exper-
imental result have been constructed (see [5] for further explanations and refer-
ences), and naturally these models are not exclusively based, nor do they explic-
itly enforce the stability criterion obtained from linear analysis. This result should
give a warning when constructing models of semi-convection which assume the
results of linear stability analysis to strictly hold in the parameter ranges of as-
trophysical interest. Kimura et al. [20] have recently published direct numerical
simulations of salt-fingers under the presence of a weak shear flow (Ri ≥ 1/2 >
Ricrit = 1/4) in saltwater. They find pronounced differences of many relevant quan-
tities (root mean square derivatives of velocities and effective diffusivities of heat
and salt) for Ri = 1/2 when compared to cases of negligibly weak shear (which
in their simulations occurs for about Ri � 6). No similar work has yet been done
for the case of semi-convection or low Prandtl numbers which occur in astro-
physics.
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To make further progress, models need both the challenge and the inspiration
provided by experiments. Structural properties are a typical example. For models of
semi-convection, the formation and existence of layers is often a crucial ingredient,
for instance, for the model of Spruit [41] or in the analysis of Stevenson [44], while
in other models the physics peculiar to such layers such as interfaces in-between
them, and thus a variable gradient through a stack of layers tends to be neglected (for
example, in the models of [4, 6, 63]). Clearly, to be answered these questions require
experiments, whether they are made in the laboratory, in the field, or numerically.

11.4.2 Experiments

Already in the 1970s a series of laboratory experiments were carried out to investi-
gate the formation of layers in double-diffusive processes. Huppert and Turner [17]
performed a set of ice melting experiments in saltwater basins and predicted layer
formation in this peculiar situation. The laboratory results could be confirmed at the
Erebus Glacier in the Antarctic by Jacobs et al. [18]. He observed mean step heights
of 20 m in salinity and temperature beneath the tip of the glacier tongue. Sidewall
effects are found to form layers rapidly under certain conditions, e.g. when heat is
generated by photographic supply. This process was studied in details by Thorpe,
Hutt and Soulsby [52] using a strong lamp shining on the vertical wall of the fluid
column, in particular to model oceanography-related boundary conditions. Another
important work was published by Fernando [10] in 1987, who extensively studied
the layer growth and the entrainment rate with a saltwater experiment. Especially,
a critical layer height was predicted, at which a second convecting layer formed.
Recent developments by Koetter [23] lead to the assumption that shear stress causes
a significant structural modification. This process is relevant for semi-convective
mixing in a rotating reference frame.

All the previously discussed experimental results are essentially limited to water
as a fluid and thus to a different regime with respect to the Prandtl number, i.e. for
Pr > 1 instead of Pr� 1, as would be appropriate for stellar plasma. Numerical
simulations, however, can help to bridge this gap.

11.4.3 Numerical Simulations

Before turning to multidimensional simulations proper, let us briefly address a
method which is computationally one-dimensional. The one-dimensional turbulence
(ODT) approach (for a description, see [19], [11]) treats the advective and diffusive
processes in different ways. The time-evolution due to diffusive processes is treated
in the standard way. Advective processes are modelled via specific stochastic map-
pings. Basically, the approach can also be used in the sense of a subgrid model in
multidimensional simulation.
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In [11], however, it is applied as a stand-alone tool and, as a consequence, is
computationally 1D (plus the time variable). This allows for fine gridding barely
or not at all achievable in multidimensional simulations. In addition, in the specific
implementation to which we refer care is taken about adaptive gridding. The method
allows also the inclusion of horizontal shear flows.

Of course, there exist basic limitations to such an approach. The most elementary
one is that quite generally any one-dimensional approach cannot faithfully represent
structures in the other (horizontal) directions beyond yielding averages of the phys-
ical quantities (and possibly some spatial correlations, depending on details of what
is actually being done). In the case of layered semi-convection with stairs forming,
this amounts, in particular, to the inability to treat effects of waves of the interface.
This refers not only to the efficiency of transport of material and heat through the
interface, but, perhaps more importantly, to questions of stability of the interfaces
against these wave motions.

However, some multidimensional models of semi-convection show the occur-
rence of interfaces even in parameter regions of astrophysical interest (low Prandtl
number), see below. While these staircases do not necessarily last forever, there is
a time span during which they may exist and for which these considerations are of
interest.

Applying this methodology adopting the Boussinesq approximation, [11] study
properties of interfaces both with the absence or presence of shear. The parameter
domain spans Prandtl numbers from Pr = 0.01 to Pr = 300. A number of power-
laws between parameters such as Pr, Le, Ra, Rρ etc. are given. In sheared flow, this
time for Pr = 7, three regimes for interface behaviour are identified. Not surpris-
ingly, when increasing shear, i.e. decreasing Richardson number Ri, there firstly is
but little difference to the unsheared case. Increasing shear then leads to a sharp-
ening of the density jump due to enhanced entrainment. In the third regime with
highest shear, the interface is broken and flattened out and ultimately destroyed.

First, truly multidimensional simulations in a regime attempting to approach as-
trophysically relevant cases (small Prandtl and Lewis numbers as compared to unity)
commenced no earlier than in the 1990s with Merryfield’s investigation [32]. In the
setting of this paper, the physics applicable to the interior of a star of 30M� is
adopted. In the stellar model, the semi-convection zone has a vertical extension of
about 3×105 km. Linear stability analysis including the change in molecular weight
from top to bottom shows that the fastest growing gravity waves have a typical wave-
length of ∼500 km for this star. A reasonable multiple of that size was chosen for
the extension of the domain allowing the representation of several of such waves.
A two-dimensional setting was adopted.

The numerics consists of Fourier collocation for temperature and velocity in the
horizontal direction and of fourth-order central differences or tenth-order compact
differentiation in the vertical. Some extra smoothing was applied to T because the
chosen time-step was larger than stability considerations for the explicit time inte-
gration method would allow. The composition field with its finer features was treated
by the flux corrected transport method.

The physical setting involved the anelastic approximation. Although aimed to-
wards realistic stellar conditions, parameters used deviated from the physical values
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for the stars. Naturally, the diffusion coefficients had to be chosen larger. In addi-
tion, however, it was necessary to impose a steeper temperature gradient because
the growth times for the realistic one would have been too slow for computations
to be feasible. Indeed, it is primarily a variation of the parameter ∇ − ∇ad which
was used. A main result is that the character of the motions changes with decreasing
driving. For strong driving, the waves originating from the vibrational instability
grow, break, and ultimately the whole domain is convectively mixed. For cases of
less driving, a step reminiscent of the staircase as in the model of Spruit [41] formed.
In a case with still less driving, the final outcome resembles solitary waves.

The next major paper on semi-convection modelling in 2D was Biello’s PhD-
thesis (the easiest reference to results is [3]). Numerically, the work is not quite
dissimilar to the paper just described: pseudo-spectral in the horizontal, compact
finite differencing in the vertical direction. The code sets out from compressible hy-
drodynamics. Both high and fairly low Prandtl number cases are investigated (down
to Pr= 0.25). With respect to the low Prandtl number regime, the issue whether one
convective layer, extending from top to bottom, will form or whether layering will
spontaneously cease, the outcome is pessimistic with respect to the latter scenario.

Recently, a group mainly from the United States and Germany has commenced
working on modelling semi-convection numerically.5 In [35] and [33] these inves-
tigators address questions of direct astrophysical interest. There, they consider the
Boussinesq approximation for the case of low Prandtl and Lewis numbers. Numeri-
cally, their approach is based on spectral methods in all three dimensions, even the
vertical, plus periodic boundary conditions (to temperature perturbation, etc.), again
in the vertical as well. They identify two-parameter regimes which result from the
simulations. In one, there ensues a sort of essentially homogeneous turbulence. It
leads to a mass transport which surpasses case two, to be discussed immediately, by
orders of magnitude. It is, however, still lower than in the case of ordinary convec-
tion. In case two, semi-convective layers with temperature and composition jumps
develop. As time proceeds, they merge, leaving behind again a sort of turbulent
state. Adopting methodology originally developed with thermohaline convection in
mind, these authors derive a criterion that can be used to figure out which case to
expect as a function of Rρ .

At the same time, Zaussinger [64] investigated semi-convection with the fully
compressible formulation and with the Boussinesq approximation using a (W)ENO-
based staggered grid method. The parameter space covered three magnitudes in each
relevant dimensionless number and, for the case of the compressible formulation, up
to one pressure scale height. He showed a low dependence on the Prandtl number,
which coincides with earlier theoretical assumptions. Furthermore, no significant

5Note that ‘semi-convection’ discussed in the present article is dubbed ‘double-diffusive convec-
tion’ in their work (which should be kept well separated from ‘fingering convection’ which refers
to the specific case where the stably stratified component has a larger diffusion coefficient than the
other, unstably stratified one). To avoid misunderstandings in the present paper, we use the termi-
nology and notation more commonly found in astrophysics and introduced further above also for
describing their work.
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differences in the fluxes were observed in either method, even for the largest relevant
scale heights. Therefore, the incompressible formulation was concluded to represent
an appropriate and valid approximation describing thin semi-convective layers. The
influence of Rρ on the fluxes was found to scale with the power law exponent β .

For his work, Zaussinger [64] extended the ANTARES code, [34], which had
been designed from the very beginning to operate in 1D, 2D and 3D. ANTARES is
capable to also operate in spherical geometry, which, when tackling semi-convective
zones as a whole, may be of interest. More recently, its developer team has extended
the range of applicability of Kwatra’s method [25] to the case of multicomponent
flows, typically hydrogen and helium, and by enhancing its stability which was
wanting in long-time runs (see [13]). This method solves the full Navier–Stokes
equations without any approximations as are required by the Boussinesq or the
anelastic formulation. Consequently, it can tackle at the same time flows of very
low and high Mach number, including discontinuities. Still, its Courant–Friedrichs–
Lewy condition involves the fluid velocity only (and not the sound speed), and it
therefore enjoys the same favourable time-step properties as those more approx-
imate formulations. This may be important for modelling entire semi-convective
zones as opposed to thin layers only. Further developments concern numerical is-
sues: new Runge–Kutta methods have been developed with the particular require-
ments of the time-advancement of Navier–Stokes equations and here, again, of semi-
convection in mind. The most successful of these methods have been shown to yield
a substantial gain in efficiency when compared to traditional Runge–Kutta time in-
tegrators that will translate into increased returns of computer runs. First results on
these developments have been published in [24].

11.5 Conclusions

Summarizing the present state and future developments, let us remark first that
semi-convection for the structure and evolution of gaseous giant planets has recently
been revived by Chabrier and Baraffe [8], who argued that the radius excess found
in some exoplanets could be explained by reduced heat conduction efficiency of
a semi-convective zone. Indeed, the possibility of semi-convection in gaseous giant
planets had already been proposed by Stevenson [45] two decades earlier, but the
process never gained much attention as long as the planets of our own Solar System
remained the only ones for which this process could be studied. Extending the per-
spectives discussed in [8, 45], very recently Leconte and Chabrier [29] argued that
semi-convection has to be considered a key physical process also in gaseous giant
planets and thus in most exoplanets found thus far and should hence be included
in more complete planet structure and evolution models. The reason for this is that
even if semi-convection may not be sufficient on its own to explain all current data
on exoplanet radii and luminosities, its presence affects the heavy material content
in giant planets, which is an important diagnostic for models of planet formation.
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Obviously, such investigations will need basically the same knowledge and phys-
ical insight as is true for research in stellar physics. The question therefore must be:
what has been achieved and what can be expected?

The time span between the seminal paper by Ledoux [30] and the present year
happens to comprise two thirds of a century. This time span has witnessed an in-
crease of analytic models for semi-convection of such a form that they can more or
less easily (some of them definitely less easily) be incorporated into codes for stellar
structure or evolution. To be sure, the very fact that models based on rather different
physical premises are in concurrent use till today demonstrates that no unique con-
clusion has been reached regarding which model is possibly correct. A number of
incorrect models have, however, been rejected. Having to choose among the differ-
ent available models for a particular application, the most important requirement on
any of them is certainly that they should take into account the physical fact that the
fluxes of heat and mean molecular weight (helium, salt, etc.) are interlinked. Models
which do not take that property into account can hardly be expected to yield reliable
results. From the viewpoint of astrophysical observations, it may be that the advent
of high-precision asteroseismology allows some further conclusions.

The most promising path for understanding and progress, however, is, in the au-
thors’ opinion, modelling based on the essentially complete equations of the prob-
lem in multidimensions. After all, this approach allows the close investigation of
a number of relevant hydrodynamical processes, which otherwise could at most be
guessed. This is true even when the parameter range relevant for stellar physics
is elusive. The very same difficulty regarding parameters has not hindered inves-
tigations of ordinary stellar convection to make tremendous progress over the last
decades. Admitting that semi-convection seems to be more difficult, hints from ex-
periments that scaling laws hold over a pleasantly large range for a number of pa-
rameters are reassuring with regard to extrapolation.

The very least which can be expected from numerical simulations, in addition to
elucidate basic physical effects, is that simplified models can be checked. For exam-
ple, it is absolutely feasible to compare the predictions of ODT with the outcome of
numerical experiments for nontrivial Prandtl numbers such as Pr = 0.01 and to get
insight to the faithfulness of this approximation or others.

It is also encouraging that now two groups are working on multidimensional
modelling of semi-convection, namely the group as exemplified in [33, 35] and the
group as exemplified in [13, 24, 64]. It will be rewarding to compare the outcome
of the codes using different numerics. At the same time, the influence of boundary
conditions can be studied: the simulation code used by the first group assumes ver-
tically periodic boundary conditions for the disturbances, while the code used by
the latter group has no specific restrictions on the boundary conditions and thus can
also apply, for instance, fixed plates.

Overall, it seems that isolated efforts, which dominated numerical modelling
of semi-convection since it commenced in 1995, are increasingly giving way to a
broader attack as appropriate for a problem of such complexity.
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Chapter 12
Experimental and Numerical Investigation
of Internal Gravity Waves Excited by Turbulent
Penetrative Convection in Water Around
Its Density Maximum

Stéphane Perrard, Michaël Le Bars, and Patrice Le Gal

Abstract This study is devoted to the experimental and numerical analysis of the
excitation of gravity waves by turbulent convection. This situation is representative
of many geophysical or astrophysical systems such as the convective bottom layer
of the atmosphere that radiates internal waves in the stratosphere, or the interac-
tion between the convective and the radiative zones in stars. In our experiments,
we use water as a working fluid as it possesses the remarkable property of hav-
ing a maximum density at 4 °C. Therefore, when establishing on a water layer a
temperature gradient between 0 °C at the bottom and room temperature at the top,
a turbulent convective region appears spontaneously under a stably stratified zone.
In these conditions, gravity waves are excited by the convective fluid motions pene-
trating the stratified layer. Although this type of flow, called penetrative convection,
has already been described, we present here the first velocity field measurement
of wave emission and propagation. We show in particular that an intermediate layer
that we call the buffer layer emerges between the convective and the stratified zones.
In this buffer layer, the angle of propagation of the waves varies with the altitude
since it is slaved to the Brunt–Väisälä frequency which evolves rapidly between the
convective and the stratified layer. A minimum angle is reached at the end of the
buffer layer. Then we observe that an angle of propagation is selected when the
waves travel through the stratified layer. We expect this process of wave selection
to take place in natural situations.
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12.1 Introduction

In most of geo- and astrophysical systems, turbulent convective fluid layers are con-
tiguous with stably stratified zones. Examples include the oceanic upper mixed layer
and underlying pycnocline, the atmospheric convective layer and overlying strato-
sphere, the convective and radiative zones in stars, etc. In classical models of plan-
etary and stellar fluid mechanics, stratified zones are often postulated to be without
proper motion. They can nevertheless support oscillatory motions called gravity or
internal waves, where the restoring force is due to buoyancy. It has been recognized
some 40 years ago in geophysics [3] and more recently in astrophysics [24] that
gravity waves can be excited by turbulent convective motions at the interface sep-
arating the convective to the stratified fluid domain. This mechanism could be of
fundamental importance regarding the transport of momentum and energy through
the stratified layer, with important consequences for the system’s global organiza-
tion and evolution. For instance, it has been suggested that in the Earth’s atmosphere,
the momentum transported by convectively generated gravity waves could drive the
quasi-biennial oscillation, i.e. the measured quasi-periodic oscillation of the equa-
torial zonal wind between easterlies and westerlies in the tropical stratosphere with
a mean period of 28 to 29 months [10]. Gravity waves are also known to affect
the global momentum budget in the middle and upper atmosphere as well as in the
troposphere through wave drag [2]. In stars, convectively generated internal waves
constitute an efficient process for angular momentum transport over large distances:
they are now seen as an important ingredient in the evolution of rotation within stars
[12]. Gravity waves are also invoked as a source of mixing for chemical elements
and could help to resolve the enigma of the Lithium dip, forming a coherent picture
of mixing in all main sequence stars [21].

Despite a significant number of studies, the current treatment of convectively
generated gravity waves still presents major weaknesses. Indeed, the precise mech-
anism for the generation of such waves, since their typical amplitude as well as their
time and space frequency spectra still remain largely unknown. This is mostly due
to the difficulties encountered in rigorously describing, in theoretical and numerical
models, the transition layer between the convective and the stratified zones, and to
simultaneously address a very large range of time and length scales. Two types of
approaches can be imagined from a theoretical or a numerical point of view. The first
consists in describing the whole system with a single set of equations and methods;
but this remains up to now out of reach of theoretical models and of precise nu-
merical simulations (see however the very interesting works in 2D in [18] and [19],
and the most recent simulations in 3D by [4], but with a moderate resolution). The
second, more widely applied, is to describe separately the convective and stratified
zones, which allows one to solve each of them with relevant methods and scales but
necessitates that one follows the location of the interface and imposes ad hoc in-
terface conditions that control part of the physical mechanisms. For instance, when
considering a fixed interface, coupling is only induced by stresses at the boundary,
and the possible effects of interface deformations by overshooting plumes are ne-
glected [21]. In this context, an experimental approach based on relatively simple
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laboratory arrangements using water as a working fluid is of great interest, since it
allows one to get a global picture of this complex system including all of its inter-
actions and nonlinearities.

Internal waves correspond to periodic density fluctuations in time and space in a
stably stratified layer, i.e. where the density decreases with the altitude. In the case of
a temperature stratification the Rayleigh number is negative and convective motions
will never appear. On the other hand, a small displacement of a fluid particle induces
a buoyancy force due to the local difference of density. Writing the classical set of
equations for fluid mechanics with a perfect fluid in the Boussinesq approximation
and looking for plane wave solutions, the dispersion relation for internal waves can
be deduced analytically:

ω2 =N2 sin2 θ (12.1)

where ω is the frequency of the waves, and θ the angle between the wave vector
and the vertical axis. Note that the wavelength does not appear explicitly in this
dispersion relation. N is the Brunt–Väisälä frequency given by

N(z)= 1

2π

√

gα(T )
dT

dz
(12.2)

where α(T ) corresponds to the thermal dilatation coefficient and g to the accel-
eration of gravity. In the case of a constant temperature gradient and no variation
of α with temperature (for instance far from the maximum density of water), the
Brunt–Väisälä frequency N remains constant.

Several experimental studies published in the 1960s and 1970s and mostly ded-
icated to geophysical applications, focus on this internal waves generation by con-
vective motions. Some of them focus on non-stationary situations where an initially
thermally stratified layer of water is suddenly heated from below [6]: a convective
mixed zone then forms from the bottom of the tank and progressively invades the
whole layer of fluid. Others studies benefit from the unusual property of water that
its density has a maximum value near 4 °C. Consequently, in a tank filled with wa-
ter with a horizontal bottom at about 0 °C and a warmer top at room temperature
or more, the density stratification is stable in the higher part of the tank and unsta-
ble below the 4 °C isotherm. With sufficient separation between the top and bottom
plates, the bottom layer is convectively unstable, whereas the upper layer remains
stably stratified, allowing one to study stationary configurations once steady-state
heat fluxes are established [23]. As expected, in both transient and stationary ex-
periments, the presence of inertial waves in the stratified zone have been observed,
based mostly on local temperature measurements. But such local measurements do
not allow one to build a global description of the flows, and in particular the cou-
pling between the stable and the unstable layers is still puzzling. To the best of our
knowledge, only one recent study by [16] has reinvestigated these questions using
modern techniques of non-intrusive global flow measurements, but only for the non-
stationary case. Interesting results regarding the excited spectra of internal waves in
space and time and the strong two-way coupling between convection and internal
waves have, however, been reported. These results now demand confirmation and
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generalization in the stationary configuration, which is the purpose of the present
study.

In the seventies, McLaren et al. [13] and later Cerasoli [5] investigated the na-
ture and the energy transfer of internal gravity waves generated by a thermal (i.e.
an instantaneous release of a buoyant volume of fluid), using respectively particle
tracking method and local conduction measurements complemented by dye line vi-
sualization. More recently, Ansong and Sutherland [2] have presented experimental
results of the generation of internal gravity waves by a turbulent buoyant plume
(i.e. a continuous release of buoyant fluid) impinging upon the interface between a
uniform density layer of fluid and a linearly stratified layer (all made of salty wa-
ter). Using non-intrusive schlieren measurements, they determined the fraction of
the energy flux associated with the plume at the neutral buoyancy level that is ex-
tracted by the waves, and quantified the maximum vertical displacement amplitude.
In this case, the frequency of the waves was found to lie in a narrow range relative to
the buoyancy frequency, contrary to the numerical results by Rogers and Glatzmaier
[18], who predicted a rather extended range for the frequency of waves emitted from
a mixing layer. This point will also be discussed here.

12.2 Experimental Setup and Measurement Techniques
for Penetrative Convection in Water Around 4 °C

To simplify the fluid motions and their measurements, we choose to confine the
layer of water between two vertical walls (x and z being respectively the horizontal
and vertical coordinates) separated by a short lateral distance equal to 4 cm along
the y direction. We have used two different experimental cells that both almost re-
produce the Hele–Shaw geometry. The first was built using two Plexiglas plates of
dimensions 20 cm× 20 cm in the (x, z) plane and thick enough (2 cm) to reduce
horizontal outward heat fluxes as the conductivity of Plexiglas is three times lower
than the conductivity of water. A second container has been also used. It is taller,
allowing a better analysis of the propagation of the internal waves in the stratified
layer. It was built by two “vacuumed” glass slabs with a very low thermal conduc-
tivity λv = 8.4×10−2 W/K/m, i.e. a hundred times smaller than water conductivity.
The x and z dimensions of these windows are 18 cm× 35 cm. The two other lateral
vertical walls of both containers were made in Plexiglas with an additional layer
of polystyrene foam of thickness 6 cm. The experimental containers were closed by
bottom (z= 0) and top (z= 35 cm or 20 cm) copper plates whose temperatures were
regulated by two thermal baths with an accuracy of 0.01 °C. We have checked by
visual inspection that as desired, mainly two-dimensional fluid motions take place
in the water layers, greatly simplifying the measurements of the velocity field. This
narrow geometry also allows us to determine the free position of the separation zone
between the convective and the stratified layer which depends on the heat transport.
To avoid long thermal transients, we have used the double-bucket technique [17] to
prepare a temperature stratified layer of water above a homogeneous layer at 4 °C.
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Fig. 12.1 Schematic
representation of our
experiment. The
non-monotonic water density
profile allows us to observe
two different layers in a
stationary state. The lower
one is a turbulent convective
layer, whereas the upper layer
is stratified where internal
waves can propagate

The bottom copper plate temperature is then regulated at Tbot = 0 °C and the upper
at a temperature Ttop ranging from 18 °C to 35 °C depending on the experimental
run. As the density of water increases with the temperature between Tbot = 0 °C and
Tm = 4 °C, natural convective motions appear in the bottom layer. This convective
layer grows and finally reaches a steady state where its height does not evolve any
more. This position is around zm ∼ 25 cm from the bottom, which gives a height of
10 cm for the stable stratification in the case where the tall vacuumed-glass container
is used. Figure 12.1 gives a schematic representation of the experimental arrange-
ment and of the physical mechanisms of penetrative convection.

Two kinds of measurements were taken in order to characterize both layers. The
simplest used local temperature probes. A set of four temperature-type K sensors
were positioned at different heights in the middle part of the experimental cell. An-
other temperature probe was also used to measure vertical temperature profiles. This
direct and simple technique was already used (with platinum probes (Pt 100)) by
Townsend [23], who reported the first observation of internal waves in water around
4 °C by measuring the temperature fluctuations in the stratified layer. The typical
amplitude of temperature fluctuations is δT ∼ 0.01 K, which corresponds to a rela-
tive variation of density of δρ/ρ ∼ 10−6. Note that this amplitude is hundred times
smaller than the fluctuation of density usually observed in experiments on internal
waves using salt water. An important consequence of this small density gradient is
the impossibility to use the now-popular synthetic schlieren method [20]. This tech-
nique is based on the variation of the optical refraction index which is undetectable
in our case. Therefore, we use the more sensitive Particle Image Velocimetry method
(PIV) [1] to directly measure the velocity field associated to the fluid motions. Small
particles with a diameter d = 30 µm and a density close to the water density (at the
temperatures considered here) are used as tracers. Fortunately, the convective mo-
tions are turbulent enough to mix these particles in the whole flow within a few days.
A laser beam illuminates these particles on a vertical section of thickness 1 mm and
4500×2500 resolution images are recorded with a numerical photographic camera.
A PIV measurement algorithm [15] is then used to extract the velocity fields from
the data. Our analysis was performed using typically 128× 32 boxes of 128× 32
pixels with a distance between the centers of two neighboring vertical boxes of
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�Z = 0.15 mm and �X = 0.6 mm between two horizontal boxes. Finally, the time
step between two images is chosen between �t = 5 s and 20 s. This technique pro-
duces velocity maps of 100× 80 vectors as functions of time. The range of velocity
values which can be measured with an accuracy better than 5 % depends on the value
of �X, �Z and �t . Owing to the high variation of the velocity along the vertical
direction z in the region between the two layers, the PIV parameters are adapted to
each measurement, that is why we have used several different time increments. We
have chosen rectangular boxes to increase the accuracy along the horizontal direc-
tion and the number of measurement points along the vertical direction. After the
extraction of the measured velocity field V (x, z, t), we perform a signal analysis
in the three-dimensional Fourier space (f, kx, kz) for respectively time, x direction
and z direction. To separate the weak wave signals from the background noise, we
use the singular property of internal waves to propagate in a direction making an
angle θ relative to the vertical direction independent of the wavelength. There are
four directions of propagation for each Fourier component (f, kx, kz) of the velocity
field V (r, t), making the traditional St. Andrew’s cross whose branches are perpen-
dicular to the wave vectors. In our case, as we will see, internal waves may contain a
wide range of frequencies, and we need to separate both the Fourier components in
time (different values of f ) and the Fourier components associated to different di-
rections of propagation given by the sign of kx and kz. To perform this analysis, the
velocity field has been studied with the help of the Hilbert transform, a useful tool
first used on internal wave observations in [14]. This technic uses the central sym-
metry of the Fourier transform of a real signal, here V (x, z, t). The wave beam of
frequency f propagating along the (kx, kz) direction is the sum of two symmetrical
Fourier components (f, kx, kz) and (−f,−kx,−kz). In the spatial Fourier domain,
the components of waves propagating along two opposite directions are combined
in (kx, kz) and (−kx,−kz). We separate these components by keeping only the pos-
itive frequency in the three-dimensional Fourier space. After performing an inverse
Fourier transform in time, each quarter of the (kx, kz) space corresponds now to the
wave propagating along the chosen direction. We can thus filter and keep only one
quarter of the (kx, kz) plane and perform the inverse Fourier transform in space to
obtain the space-time velocity field V (x, z, t) associated to one of the four beams
of the St. Andrew’s cross. Additional band-pass filtering in time and space has been
also occasionally performed and will be mentioned when used.

12.3 Turbulent Penetrative Convection

12.3.1 Classical Rayleigh Bénard Convection Between Two
Horizontal Plates

A layer of liquid subjected to a negative vertical gradient of temperature between
a bottom and a top solid plate is set into motion if the buoyancy force due to the
thermal dilatation of the fluid is large enough to compensate for the diffusion of
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both temperature and momentum. The associated nondimensional number, called
the Rayleigh number, measures the ratio of these destabilizing to stabilizing effects:

Ra= gα�TH
3

κν
, (12.3)

where α is the thermal dilatation coefficient, �T the temperature difference be-
tween the top and the bottom of the layer, H the height of the fluid layer, and κ
and ν respectively the thermal diffusion coefficient and kinematic viscosity. We
can note that this Rayleigh number is negative if the temperature gradient has
the opposite sign of α. For solid boundary conditions, the critical Rayleigh num-
ber value is Rac = 1708 and 1101 for mixed solid/fluid boundary conditions. Far
from this threshold, turbulent convection invades the whole fluid layer except for
two thin thermal boundary layers of thickness δc , confined close to the solid top
and bottom plates. The mean temperature in the turbulent bulk is constant equal
to Tm = Tbot + �T/2, in contrast with the temperature in the two boundary lay-
ers, which varies linearly with the altitude. δc corresponds to the thickness of these
boundary layers for which the local Rayleigh number is equal to the critical value
calculated with �T/2, i.e.,

Ra(δc)= Rac, (12.4)

where Rac = 1101. This characteristic length was first introduced by Malkus [11],
and the picture of two thin boundary layers of thickness δc separated by a homoge-
neous bulk at a temperature Tm is now the classical image associated with turbulent
Rayleigh–Bénard convection for Rayleigh numbers higher than 106.

12.3.2 Penetrative Convection in Water Around 4 °C

For water, the sign of α changes at 4 °C. Thus the lower layer where 0 °C < T <
Tmax = 4 °C can be unstable if thick enough (Ra> Rac) contrary to the upper strat-
ified zone corresponding to T > 4 °C which will be always stable (Ra< 0). Using
the physical parameters of water, we estimate the value for the Rayleigh number to
be around Ra = 107 for a convective layer of height H = 15 cm. This large value
for the Rayleigh number justifies to use the approach of Malkus [11] to evaluate the
thickness of the bottom diffusive thermal boundary layer in our penetrative convec-
tion experiment:

δc =
(

Racκν

g

ρ0

�ρ

)1/3

, (12.5)

where �ρ/ρ0 corresponds to the relative variation of water density between Tbot =
0 °C and Tmax = 4 °C. As can be seen, δc depends only on the physical properties
of water and is equal here to δc = 0.6 cm. This value is confirmed by measuring the
vertical temperature profile at the bottom of the convective layer, for several values
of the temperature at the top (Ttop = 8,15,20,35 °C), and for both, the Plexiglas
and the vacuumed glass tanks (H = 20 mm and H = 35 mm, respectively).
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Fig. 12.2 (a) Vertical temperature profile showing the constant temperature in the turbulent con-
vective layer (0< z < 23 cm). (b) Vertical density profile calculated from the temperature profile.
(c) Vertical Brunt–Väisälä frequency N(z). The dotted line represents the mean position zm of the
Tc = 8 °C isotherm

As presented in Fig. 12.2(a), we measure in the whole convective layer a constant
mean temperature Tm equal to Tmax = 4 °C with a typical variation of 0.1 °C. This
layer corresponds to a well-mixed zone of water. Close to the density maximum
at Tmax = 4 °C, ρ(T ) is a symmetric function of T − Tmax, so a fluid particle at
0 °C will have a density equal to one at 8 °C and thus, even in the limit of adiabatic
motion, cannot penetrate beyond the 8 °C isotherm. The vertical density profile has
been computed using our temperature measurements and the physical properties
of water. It is shown in Fig. 12.2(b). The well-mixed layer extends from z = δc ∼
0.6 cm to z= 23 cm. For z > 25 cm, the density gradient is almost constant, which
gives a constant value of N = 0.05± 0.01 Hz (see Fig. 12.2(c)). In this region, we
expect the propagation of waves to be along straight lines forming different angles
θ with the vertical axis depending on the wave frequency. The vertical position of
the limit between the convective and the stratified layers can be determined using
the heat flux Qd through the lower diffusive boundary layer. As the system reaches
a stationary state, there is a thermal equilibrium between each layer, and the vertical
heat flux Q(z) has to be conserved for all value of z. We define this limit by the
position zc of the Tc = 8 °C isotherm. In the following, zc is measured to be around
25 cm. The heat flux verifies the implicit equation

Qd =Qs, (12.6)

whereQs is the thermal diffusive flux through a stratified layer of thickness zup− zc
subjected to a difference in temperature of �T = Tup− Tc. Using Fourier’s law, we
can deduce the value for zc:

zc = δc Tup − Tc
Tm − Tbot

, (12.7)
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Fig. 12.3 (a) Temporal temperature spectrum in the convective layer. The measurement has been
performed by two type K probes. We find a direct energy cascade from small to higher frequencies
for f > fc ∼ 5 × 10−3 Hz. (b) Temporal temperature spectrum in the stratified layer. Due to
their small amplitude, gravity waves are not detected, and the spectrum is typical of a f−1 noise
spectrum (f−2 for the energy spectrum)

where δc corresponds to the thickness of the lower thermal boundary layer (see
Eq. (12.5)). As the thickness of the boundary layer δc and the difference of tem-
perature Tm − Tbot are fixed by the maximum density of water at 4 °C, the height
of the stratified layer depends only on the temperature imposed at the top of the
tank. We remark that between the convective and the stratified zones, we observe an
intermediate layer of thickness around two centimeters where the temperature and
the density gradients vary with z, first slowly, then very rapidly. This zone is in fact
delimited by the 4 °C and 8 °C isotherms. This intermediate zone plays an important
role in the transmission of both momentum and energy from the convective motions
of the internal waves, as we will see below.

Before studying the generation of internal waves and their interaction with
convection, we will first describe our natural wave maker, the turbulent convec-
tive layer. For this purpose, we perform two point temperature measurements at
z1 = 5 cm and z2 = 12 cm (in the container 1) and compute the Fourier transform
of δT = T (z2)− T (z1). This method eliminates the thermal fluctuations of the ref-
erence junction. The resulting temperature spectrum ranges from f = 2× 10−6 Hz
to f = 3 Hz (see Fig. 12.3(a)). Figure 12.3(b) presents the same spectrum but mea-
sured in the stratified layer. As can be seen, no coherent temperature fluctuations
are detectable in this zone as the gravity waves amplitude is very small; thus, this
spectrum corresponds to thermal noise with a classical power-law proportional to
f−2. The temperature fluctuations in the convective zone flat part of the spectrum
in Fig. 12.3(a) is observed in a large range of frequencies starting from very low
frequency (certainly associated to large circulation in the whole container) up to
a characteristic frequency fc ∼ 5 × 10−3 Hz. The existence of this characteristic
low frequency fc suggests a production mechanism that forbids the generation of
fluctuations at frequencies higher than fc. This effect is in fact also observed in clas-
sical turbulent convective systems with top and bottom solid boundaries conditions.
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Any temperature fluctuation grows from small perturbations at the solid plate that
diffuse in the boundary layer of thickness δc (see Eq. (12.5)) and forms ascendant
plumes in the bulk. The rising of one of these convective plumes causes the fluid in
the boundary layer to be carried away, and the thin thermal layer has to be rebuilt
before another plume could appear. The reconstruction time corresponds to the dif-
fusion time τc for a perturbation to diffuse through this layer. This duration has been
evaluated by Howard [8]:

τc = δc
2

κ
. (12.8)

Using the values corresponding to our experiments (κ is equal to 1.36×10−7 m2/s at
4 °C), we find τc ∼ 250 s whose inverse has indeed the same order of magnitude as
the experimental observed frequency fc observed on the spectrum (see Fig. 12.3(a)).

As observed in the spectrum of Fig. 12.3(a), an energy cascade takes place for
frequencies higher than fc. In the frequency range larger than fc where the signal-
to-noise ratio is larger than 1, we observe an energy cascade on more than 1 decade.
The corresponding exponent is equal to −4 ± 0.01 for the energy spectrum. This
value is larger (in absolute value) than the typical value around −2.8 found in tur-
bulent Rayleigh–Bénard convection [7]. This difference of slope in the spectrum
can have two origins. The first reason is the lateral confinement of the flow and
the quasi-bidimensional motions of the fluid between the two vertical walls that
increases the dissipation at every scale larger than the thickness of the tank. The
second reason comes from the main feature of penetrative convection. As there is
no longer fixed boundary condition at the top of the convective layer a part of the
energy can be transmitted to waves that propagate in the stratified layer. This mech-
anism induces the radiation of energy by waves that will be damped by viscosity, far
from the convective layer. Therefore, the traditional energy cascade is modified by
the energy flux which is transmitted to the waves, and can also increases the spec-
trum exponent. The relative importance of these two processes will be analyzed by
the numerical simulations (see Sect. 12.6).

This completes the picture of penetrative convection sketched in Fig. 12.1: a tur-
bulent convective layer with plumes emerging from thermal fluctuations in the bot-
tom diffusive thermal layer at a typical rate around fc. Theses plumes rise through
the turbulent convective layer before they excite internal gravity waves when pene-
trating a buffer zone at the bottom of the stratified layer. One of the possible conse-
quences of this energy release mechanism is that the turbulent spectrum of penetra-
tive convection is steeper than the classical turbulent convection spectrum.

12.4 The Buffer Zone Between the Convective and Stratified
Layers

After a few days, the convection zone reaches an equilibrium height with two asym-
metric boundary layers: the thin lower one and the upper one for which the height
is proportional to the imposed temperature difference Tup−Tc. By simple visual in-
spection of tracers, we observe large amplitude motions in the horizontal direction
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at a very low frequency in the intermediate buffer zone. At the bottom of the buffer
zone, the position of the isotherm 4 °C fluctuates in time when a convective plume
goes through the interface. These plumes excite internal waves, their wavelengths
being selected by the sizes of the wave makers that generate them. Typically the
plumes have a size of δc. However, there is also the scale of the whole container
as there is always large convective cells, even in the Rayleigh–Bénard turbulent
regimes (Ra > 106) [7]. Thus, we do not expect a sharp length selection, but rather
a wave generation on a large range of wavelengths between 0.6 cm and 20 cm.

Using PIV measurement, we observe fluctuations of velocity in space and time.
As expected, these fluctuations possess a large range of frequencies around fc =
0.02 Hz but smaller than the Brunt–Väisälä frequency and a large range of wave-
lengths varying from the size of the box (20 cm) to 1 cm. We observe only waves
propagating from the bottom to the top in both horizontal directions (kx > 0 and
kx < 0).

The next step in our analysis is to prove that the angle θ and the associated fre-
quency f of waves follow the dispersion relation given by Eq. (12.1). As these
waves are produced by turbulent motions, there is no coherence between successive
generated wave packets. Moreover, the duration of propagation through the buffer
zone for a wave of typical wavelength of 5 cm will only be a few periods. So the
time of coherence has the same order of magnitude as the period of the waves. For
such small scale separation, a classical Fourier filtering is not efficient enough to
analyze the velocity signal. Thus, we have developed a special data analysis tech-
nique, which preserves the signal information localized both in space and time. This
technique does not need any supposition on the time of coherence of the generated
waves and permits one to determine accurately the mean time-average phase veloc-
ity of the waves. To do so, we compute local correlation functions at each point of
coordinate r, between V (r, t) and V (r+ δr, t + τ):

C(τ, δr)= 1

T

∫ T

0
V (r, t)V (r+ δr, t + τ) dt. (12.9)

For a periodic signal propagating along an arbitrary direction s, the associated corre-
lation function will be periodic in time. The value of the first maximum for a positive
time τ > 0 will give the phase shift between r and r+ s. Along the direction orthog-
onal to the propagation, the phase shift will vanish. Therefore, we can measure both
the phase velocity and its direction as a local function of space and time.

Applying our technique to the measured velocity field in the buffer zone, we
can deduce the local mean direction of propagation of internal waves. This angle
of mean direction of propagation does not depend on x, but as shown in Fig. 12.4,
we observe a strong dependence on the altitude z. In this buffer zone, the waves do
not propagate along a straight line. This result can be linked to the vertical Brunt–
Väisälä profile N(z) shown in Fig. 12.2. Indeed, close to the maximum density of
water, N(z) scales as

N(z)=N0

√
z− z0

l0
(12.10)
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Fig. 12.4 The direction of propagation θ of the waves in the buffer zone, obtained by autocorre-
lation of the velocity fields measured by PIV technique. The solid line is the theoretical value of θ ,
computed with the dispersion relation and the experimental measured values of N(z) plotted on
Fig. 12.2. Dashed lines represent the bandwidth of θ of the internal wave packet

where N0 = 0.024 and l0 = 1 cm has been computed using the measured vertical
density profile ρ(z) (see Fig. 12.3). The corresponding theoretical curves have been
added to Fig. 12.4 (solid lines). It agrees closely with the experimental data with no
adjustable parameter. We insist here that this graph represents the mean direction of
propagation of wave packets with a large variability around this average value. The
dashed line shown on Fig. 12.4 correspond to the uncertainty on θ due to the large
bandwidth of the observed internal waves. Even if we can measure a mean direction
of propagation, in the buffer zone there is no narrow selection of the propagation
angle of internal waves.

12.5 The Stratified Layer

In the buffer layer we have seen that the direction of propagation changes drastically
with z. As soon as the waves travel out of this layer, the density gradient becomes
independent of z, and the direction of propagation for each wave will no longer
evolve. So in the stratified layer we expect to observe waves propagating straightway
in all possible directions with a range of frequencies a priori between 0 and N .

With our PIV technique we have measured the velocity field associated with
these waves. As before, the spectrum is filtered to keep only the waves propagating
along kx > 0 and for all of the frequencies between 0.1N and N . A PIV snapshot
of this field is shown in Fig. 12.5. Contrary to the buffer zone, the wave propagated
straightway on a longer distance, more than 10 cm. At this range of propagation, we
observe that the waves are damped by viscosity before reaching the top of the tank.
It justified a posteriori that there is no significant reflection of waves on the upper
copper plate. This feature allows us to evaluate the dissipation along the vertical
axis. For this purpose, we compute in the stratified layer the vertical kinetic energy
profile Ec given by

〈

Ec(z)
〉= 1

L

∫ L

0
V (z, x)2 dx, (12.11)
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Fig. 12.5 Instantaneous velocity field in the stratified layer. Only waves propagating toward the
right have been kept by our filtering process

Fig. 12.6 Mean kinetic
energy of the gravity waves in
the stratified layer as a
function of the altitude z

where L corresponds to the horizontal width of the tank. The experimental value
of Ec as a function of z is shown in Fig. 12.6. We observe an exponential decay of
Ec with the altitude. In the derivation of the internal wave equation it is possible to
add the viscous term at the first order [9]. So the viscous damping in amplitude of a
wave characterized by its frequency ω and wavenumber k can be written as

A(z)= e−α(k)ξ/2, where α(k)= νk3

ω

√

(N
ω
)2 − 1

, (12.12)
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Fig. 12.7 The direction of
propagation of the waves in
the stratified zone, obtained
from the velocity fields
measured by PIV. In contrast
to the buffer zone, here a
selection of frequencies and
angles is observed. The
dashed lines represent the
bandwidth of θ of the internal
wave packet

and where ξ corresponds to the coordinate orthogonal to the wave vector. This
relation has been verified experimentally [14]. We find an experimental value of
α = 0.21 cm−1, which corresponds to a typical damping length of 3 cm along the
vertical axis, which is smaller than the height of the stratified layer. The ratio be-
tween the incoming energy from the convective layer and the outgoing energy to the
stratified layer being about 20 [23], we can construct an effective damping length
for the buffer zone. This length is five times smaller than the one measured in the
stratified layer attesting to the fact that the buffer layer avoids the propagation of
energy upward.

As we see in Fig. 12.5, the internal waves seem to propagate along a selected
direction. To accurately measure the angle of propagation θ , we use the algorithm
developed previously for the buffer zone analysis (see Sect. 12.4). We observe in
Fig. 12.7 that a narrow range of θ , between 30° and 50°, is selected. This range
corresponds to a frequency between 0.4N and 0.8N . For this stratified layer, the
dispersion around the mean value is smaller than for the buffer zone. This selection
of angle in a stratified layer has also been observed in previous experiments, where
internal waves were generated by a turbulent layer [6] or by a single plume [2].
These last authors note, in particular, that an angle of 30° corresponds to the max-
imum of energy transport by the waves and an angle of 45° to the maximum of
momentum transport.

In a closely related study, Taylor and Sarkar [22] suggest a viscous damping
mechanism occurring during wave propagation to explain the progressive selection
process. Although our study shows an intense damping of the waves in the interme-
diate buffer layer, together with a selection of the propagation angle of these waves
when traveling through and exiting this layer, this explanation is still debated, and
more work should be dedicated to definitively answer this question.

12.6 Numerical Simulation: To Go Further into the Analysis

To complement this experimental study, a two-dimensional numerical simula-
tion has been performed using the commercial software COMSOL Multiphysics,
which is based on the finite-element method. Coupled Navier–Stokes and temper-
ature equations are solved in a square tank of height 35 cm and width 20 cm.
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Velocity/temperature boundary conditions are respectively no slip/imposed 0 °C
temperature at the bottom, slip/imposed 50 °C temperature at the top, and no
slip/imposed heat flux on both sides, mimicking the heat loss by conduction through
the 3-cm-thick Plexiglas plates in the experimental setup. Chosen physical pa-
rameters are typical for water around 4 °C, with a thermal diffusion coefficient
κ = 1.3 × 10−7 m2/s, a viscosity ν = 1.8 × 10−6 m2/s, and an equation of state
ρ = 1 − 8.1 × 10−6(T − 3.98)2. The numerical grid is refined near the bound-
aries and especially near the lower one to correctly resolve the small-scale dynam-
ics of turbulent plumes. Elements are of standard Lagrange P2–P3 type for solving
Navier–Stokes equations (i.e., quadratic for the pressure field and cubic for the ve-
locity field) and are quadratic for solving the temperature field. At each time step
the system is solved with the sparse direct linear solver PARDISO.1 The number of
degrees of freedom (DoF) used in the simulations is 125,866. The total duration of
the simulation corresponds to a 27.8-hour experiment, starting from a fluid at rest
with a uniform temperature of 3 °C in the convective zone z < 25 cm and a linear
temperature profile from 3 °C to 50 °C in the stratified zone z > 25 cm.

Figure 12.8 illustrates the typical state of the convective zone once the turbulent
convection is established. As described in the above notes on the experiment, the
temperature profile is mostly constant in the bulk with a mean value of about 3 °C
and with a thin thermal boundary layer at the bottom. Convective flows correspond
to small-scale chaotic plumes growing from the lower boundary, superimposed on
a large-scale cellular motion. Typical vertical temperature and velocity vertical pro-
files extracted at x = 10 cm are shown in Fig. 12.9.

The profiles of Fig. 12.9 illustrate the main difficulty of this study: temperature
fluctuations above the established linear profile and velocity fluctuations associated
with the wave field in the stratified zone are 1 to 2 orders of magnitude smaller
than temperature and velocity fluctuations associated with convective motions. This
makes them difficult to compute and to observe. Nevertheless, a good way to visu-
alize the wave field is to compute the time derivative of the temperature, as shown
in Fig. 12.8; we then notice that the amplitude of the wave pattern rapidly decreases
from the interface, as noticed in the experiment.

In order to better investigate the temporal characteristics of the flow, we have an-
alyzed by Fourier transform the temperature at two locations, one in the convective
zone and one in the stratified zone. Results are shown in Fig. 12.10(a). For compar-
ison, the same spectra for a simulation with the same parameters but where gravity
waves propagation has been artificially prevented by setting the velocity field to
zero for z > 25 cm is shown in Fig. 12.10(b). We clearly recover the results found
in the experiment. The convective spectrum is flat up to the typical cut-off frequency
corresponding to τc (see Eq. (12.8)). It then decreases rapidly with a typical expo-
nent −4. We do not see significant difference between the convective spectra in
the presence and absence of gravity wave, which suggests that this relatively high
exponent is mostly due to the two-dimensionality of our study. The spectrum asso-
ciated with gravity waves clearly shows frequency selection between 3× 10−3 Hz

1www.pardiso-project.org.

http://www.pardiso-project.org
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Fig. 12.8 (a) Time derivative
of the temperature field for
locations where T > 8 °C
(i.e. in the stratified zone)
obtained at time
t = 27.8 hours. Also shown is
the velocity field (black
arrows); (b) temperature field
(in color, between 0 °C and
8 °C in order to focus on the
convective zone) and velocity
field (black arrows) obtained
at time t = 27.8 hours
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Fig. 12.9 Vertical profiles for (a) the temperature and (b) the vertical (solid) and horizontal
(dashed) velocity at time t = 27.8 hours in the middle of the tank (x = 10 cm)

Fig. 12.10 Temporal temperature spectrum in the convective layer (upper curve, signal measured
at x = 17 cm and z= 10 cm) and in the stratified layer (lower curve, signal measured at x = 17 cm
and z= 28 cm): (a) for the standard simulation and (b) for a simulation with the same parameters
but where gravity waves propagation has been artificially prevented by setting the velocity field to
zero for z > 25 cm. Each curve corresponds to the mean value of the Fourier transforms over a
sliding window of 1 hour of the signal corrected by a degree 1 polynomial fit (to suppress the long
term drift), from time t = 1.5 hour to time t = 27.8 hours

and 7 × 10−3 Hz, corresponding to propagation angles between 25° and 60°, the
favorite angle being around 40°. By comparison, the corresponding spectrum in the
absence of waves propagation (the waves have been artificially prevented) is typical
of an f−2 noise spectrum, highlighting the good resolution of the wave field by our
method.
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12.7 Conclusion

In this study, we have used the very peculiar property of water of having a maxi-
mum density at a temperature of 4 °C. This property has permitted the experimental
investigation of penetrative convection in a stationary regime. Turbulent convection
that sets in the lower part of a water layer cooled by its bottom plate at a tempera-
ture lower than 4 °C can generate gravity waves in the upper stably stratified layer.
These waves are excited by the rising of turbulent plumes impinging the bottom of
the stratified layer. Although dealing with the small values of the involved density
gradients is a challenging task, this difficulty has been circumvented using a very
sensitive PIV technique, which is then combined with a dedicated data analysis. Our
experimental study is then completed by a 2D numerical direct simulation. In both
experimental and numerical investigations, we recover the known selection of prop-
agation angles of the waves in the stratified layer. We have however identified a third
layer squeezed between the convective and the stratified layers that we have called
the buffer layer and where the Brunt–Väisälä frequency varies with the altitude. In
this zone there is no angle selection and a strong damping in the vertical direction.
We expect the different properties of penetrative convection that we studied here to
apply in natural situations such as the generation and the propagation of g-waves in
star radiative zones or internal waves excitation in the stratosphere or in the oceans.
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